In human bodies, cartilage tissue lacks the ability to heal when it encounters trauma or lesions.
Microenvironmental factors including physical and chemical cues can regulate stem cells as well as terminally differentiated cells to modulate their biological function and differentiation. However, one of the physical cues, the substrate's dimensionality, has not been studied extensively. In this study, the flow‐focusing method with a microfluidic device was used to generate gelatin bubbles to fabricate highly ordered three‐dimensional (3D) scaffolds. Rat H9c2 myoblasts were seeded into the 3D gelatin bubble‐based scaffolds and compared to those grown on 2D gelatin‐coating substrates to demonstrate the influences of spatial cues on cell behaviors. Relative to cells on the 2D substrates, the H9c2 myoblasts were featured by a good survival and normal mitochondrial activity but slower cell proliferation within the 3D scaffolds. The cortical actin filaments of H9c2 cells were localized close to the cell membrane when cultured on the 2D substrates, while the F‐actins distributed uniformly and occupied most of the cell cytoplasm within the 3D scaffolds. H9c2 myoblasts fused as multinuclear myotubes within the 3D scaffolds without any induction but cells cultured on the 2D substrates had a relatively lower fusion index even differentiation medium was provided. Although there was no difference in actin α 1 and myosin heavy chain 1, H9c2 cells had a higher myogenin messenger RNA level in the 3D scaffolds than those of on the 2D substrates. This study reveals that the dimensionality influences differentiation and fusion of myoblasts.
Surface modification layers are performed on the surfaces of biomaterials and have exhibited promise for decoupling original surface properties from bulk materials and enabling customized and advanced functional properties. The physical stability and the biological compatibility of these modified layers are equally important to ensure minimized delamination, debris, leaching of molecules, and other problems that are related to the failure of the modification layers and thus can provide a long-term success for the uses of these modified layers. A proven surface modification tool of the functionalized poly-para-xylylene (PPX) system was used as an example, and in addition to the demonstration of their chemical conjugation capabilities and the functional properties that have been well-documented, in the present report, we additionally devised the characterization protocols to examine stability properties, including thermostability and adhesive strength, as well as the biocompatibility, including cell viability and the immunological responses, for the modified PPX layers. The results suggested a durable coating stability for PPXs and firmly attached biomolecules under these stability and compatibility tests. The durable and stable modification layers accompanied by the native properties of the PPXs showed high cell viability against fibroblast cells and macrophages (MΦs), and the resulting immunological activities created by the MΦs exhibited excellent compatibility with non-activated immunological responses and no indication of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.