Neonatal gastric perforation is associated with high mortality, particularly in premature infants. There is also a trend towards higher mortality in lower-birth-weight infants.
Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.
Chronic kidney disease (CKD) is a complex disorder that affects multiple organs and increases the risk of cardiovascular complications. CKD affects approximately 12% of the population in Taiwan. Loss of kidney function leads to accumulation of potentially toxic compounds such as indoxyl sulfate (IS) and p-cresyl sulfate (pCS), two protein-bound uremic solutes that can stimulate the progression of CKD. The aim of this study was to assess whether IS and pCS levels were correlated with CKD stage. We developed and validated a method for quantitating total and free IS and pCS in serum by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Serum samples were pretreated using protein precipitation with acetonitrile containing stable isotope-labeled IS and pCS as internal standards. After centrifugation, the supernatant was diluted and injected into a UPLC-MS/MS system. Analyte concentrations were calculated from the calibration curve and ion ratios between the analyte and the internal standard. The calibration curves were linear with a correlation coefficient of >0.999; the analytical measurement range was 0.05–5 mg/L. The limit of quantitation of this assay was 0.05 mg/L for both analytes. The reference interval was ≤0.05–1.15 mg/L for total-form IS, ≤0.05 −5.33 mg/L for total-form pCS, ≤0.05 mg/L for free-form IS, and ≤0.12 mg/L for free-form pCS. A positive correlation was observed between analyte concentration and CKD stage. Our sensitive UPLC-MS/MS method for quantifying total and free-form IS and pCS in serum can be used to monitor the progression of CKD in clinical settings, identify patients at risk, and facilitate development of further therapies for this devastating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.