The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats.
The triangular apical cell behaves as a permanent initial cell. In the multicellular meristem, however, two or three central cells behave as initial cells that are transient and regulated in a position-dependent manner. The organization and behavior of both meristems are shared with the ribbon-shaped gametophytes of Colysis.
Development of heavily asymmetric cordate gametophytes of Anemia phyllitidis (Anemiaceae), one of the schizaeoid ferns, was examined using a sequential observation technique; epi-illuminated light micrographs of the same growing gametophytes were taken approximately every 24 h. The apical cell-like wedge-shaped cell was produced once from the terminal cell of a germ filament, but it stopped dividing soon after production of one or two derivative cells. Without a functional apical cell, the gametophyte developed by intercalary growth until the early stage of wing formation, and then the multicellular (pluricellular) meristem arose from the lower lateral side of the gametophyte. This was in sharp contrast to the observation that the multicellular meristem forms in place of the apical cell in typical cordate gametophytes. Loss of the functional apical cell probably caused a site-shift in the multicellular meristem of the Anemia phyllitidis gametophyte during evolution from apical to lateral. The results suggest that apical cell-based and multicellular meristems are primarily independent of each other. The multicellular meristem produced cells equally in the distal and proximal directions to form wings in both directions but proximally produced cells divided much less frequently. As a result, a heavily asymmetric gametophyte was formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.