Objective: Obesity has been demonstrated to be associated with elevated leukocytes in adults and children. This study assessed the associations between peripheral total and differential leukocyte counts and obesity-related complications in young adults. Methods: 12 obese (median age 21.5 (range 19-28) years, median BMI 35.7 (range 32.0-44.9) kg/m2) and 11 normal (median age 23 (range 18-27) years, median BMI 19.5 (range 18.1-21.7) kg/m2) adults were enrolled. Complete blood count and serum levels of liver enzymes, fasting blood glucose, insulin and lipids were measured, and the homeostasis model assessment of insulin resistance was calculated. Fat mass was calculated using a bioimpedance analysis device, and ultrasonography was performed to measure fat thickness and to detect fatty change of the liver. Results: Total leukocyte and monocyte counts were significantly increased in obese young adults. Total leukocyte count was associated with liver enzyme levels, insulin resistance as well as visceral and subcutaneous fat thickness. Neutrophil count was associated with insulin resistance. Lymphocyte count was associated with serum liver enzymes, insulin resistance, and dyslipidemia. Monocyte count was associated with serum liver enzyme, insulin resistance, visceral and subcutaneous fat thickness, body fat mass, and percentage body fat. Conclusion: The results of this study suggest that chronic low-grade systemic inflammation is associated with obesity-related complications such as nonalcoholic fatty liver disease, insulin resistance, and dyslipidemia in young adults.
Systemic inflammation underlies the association between obesity and nonalcoholic fatty liver disease (NAFLD). Here, we investigated functional changes in leukocytes’ mitochondria in obese individuals and their associations with NAFLD. We analyzed 14 obese male Japanese university students whose body mass index was > 30 kg/m2 and 15 healthy age- and sex-matched lean university students as controls. We observed that the mitochondrial oxidative phosphorylation (OXPHOS) capacity with complex I + II-linked substrates in peripheral blood mononuclear cells (PBMCs), which was measured using a high-resolution respirometry, was significantly higher in the obese group versus the controls. The PBMCs’ mitochondrial complex IV capacity was also higher in the obese subjects. All of the obese subjects had hepatic steatosis defined by a fatty liver index (FLI) score ≥ 60, and there was a positive correlation between their FLI scores and their PBMCs’ mitochondrial OXPHOS capacity. The increased PBMCs’ mitochondrial OXPHOS capacity was associated with insulin resistance, systemic inflammation, and higher serum levels of interleukin-6 in the entire series of subjects. Our results suggest that the mitochondrial respiratory capacity is increased in the PBMCs at the early stage of obesity, and the enhanced PBMCs’ mitochondrial oxidative metabolism is associated with hepatic steatosis in obese young adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.