Bacteria release membrane vesicles (MVs) that play important roles in various biological processes. However, the mechanisms of MV formation in Gram-positive bacteria are unclear, as these cells possess a single cytoplasmic membrane that is surrounded by a thick cell wall. Here we use live cell imaging and electron cryo-tomography to describe a mechanism for MV formation in Bacillus subtilis. We show that the expression of a prophage-encoded endolysin in a sub-population of cells generates holes in the peptidoglycan cell wall. Through these openings, cytoplasmic membrane material protrudes into the extracellular space and is released as MVs. Due to the loss of membrane integrity, the induced cells eventually die. The vesicle-producing cells induce MV formation in neighboring cells by the enzymatic action of the released endolysin. Our results support the idea that endolysins may be important for MV formation in bacteria, and this mechanism may potentially be useful for the production of MVs for applications in biomedicine and nanotechnology.
In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.
An efficient method for the highly enantioselective synthesis of chiral chromanes bearing multiple stereogenic centers was developed. A chiral BINOL-based N-triflylphosphoramide proved to be an effective catalyst for the in situ generation of ortho-quinone methides (o-QMs) and their subsequent cycloaddition reaction with unactivated alkenes provided chromanes with excellent diastereo- and enantioselectivity.
The direct replacement of aromatic methoxy groups with activated carbon nucleophiles would give rise to novel synthetic pathways for targeted and diversity-oriented syntheses. We demonstrate here that this transformation can be achieved in a one-step reaction involving a bifunctional organolithium nucleophile in combination with a CAr OMe bond-cleaving nickel catalyst. The resulting products are stable, α-CH active, and suitable for various further modifications.
Aza-ortho-quinone methides allow the straightforward asymmetric synthesis of natural-product-inspired indole scaffolds possessing a quaternary stereocenter. Our approach provides access to diverse communesin and spiroindoline derivatives with high enantioselectivity under mild reaction conditions. Predictable substitution patterns are found to be the key to our regiodivergent protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.