“Going concern” is a professional term in the domain of accounting and auditing. The issuance of appropriate audit opinions by certified public accountants (CPAs) and auditors is critical to companies as a going concern, as misjudgment and/or failure to identify the probability of bankruptcy can cause heavy losses to stakeholders and affect corporate sustainability. In the era of artificial intelligence (AI), deep learning algorithms are widely used by practitioners, and academic research is also gradually embarking on projects in various domains. However, the use of deep learning algorithms in the prediction of going concern remains limited. In contrast to those in the literature, this study uses long short-term memory (LSTM) and gated recurrent unit (GRU) for learning and training, in order to construct effective and highly accurate going-concern prediction models. The sample pool consists of the Taiwan Stock Exchange Corporation (TWSE) and the Taipei Exchange (TPEx) listed companies in 2004–2019, including 86 companies with going concern doubt and 172 companies without going concern doubt. In other words, 258 companies in total are sampled. There are 20 research variables, comprising 16 financial variables and 4 non-financial variables. The results are based on performance indicators such as accuracy, precision, recall/sensitivity, specificity, F1-scores, and Type I and Type II error rates, and both the LSTM and GRU models perform well. As far as accuracy is concerned, the LSTM model reports 96.15% accuracy while GRU shows 94.23% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.