Rete ridges are important to the mechanical function of skin in animals with minimal hair, including humans. As mice do not exhibit rete ridges, the need for a quality animal model is pertinent. Here, we develop a Lanyu pig (Sus scrofa) full‐thickness wound model to explore tissue regeneration because the architecture and function are similar to humans and inbred genetic variants are available. Full‐ and partial‐thickness wounds were generated on the dorsum. Full‐thickness wounds at post‐wound day 57 exhibit severe scar with no signs of wound‐induced hair follicle neogenesis. Wound contraction is greater in the anterior/posterior relative to the medial/lateral axis. In wound beds, K14+ cells increased while K10+, p63+ and PCNA+ cells decreased compared to unwounded tissue. Epithelial β‐catenin is unchanged. The wound bed expresses more ColI, less ColIII and no elastin. Rete ridges do not form after full‐thickness wounding, but incompletely regenerate after partial‐thickness wounding. An alkaline phosphatase (ALP)+ cell population, not associated with hair follicles, is present at the bottom of the rete ridge basal layer in pig and human unwounded skin. These K5+/K10−/PCNA−/ALP+ epithelial cells are absent after full‐thickness wounding but reappear after partial‐thickness wounding, before invagination of new rete ridges. In summary, full‐thickness wounding on the dorsum of Lanyu pigs results in scar formation and perturbed molecular expression while partial‐thickness wounding permits limited rete ridge and papillary dermis regeneration. Future functional studies and further characterization will help contribute knowledge for the regenerative medicine field.
The in vivo chicken embryo model (CEM) demonstrated that gallic acid (GA) induced dysvascularization and hypoxia. Inflammatory edema, Zenker's necrosis, hemolysis, and liposis of cervical muscles were the common symptoms. Levels of the gene hif-1α, HIF-1α, TNF-α, IL-6, and NFκB in cervical muscles were all significantly upregulated, while the vascular endothelial growth factor (VEGF) was downregulated in a dose-responsive manner. Consequently, the cervical muscle inflammation and hemolysis could have been stimulated en route to the tissue TNF-α-canonical and the atypical pathways. We hypothesized that GA could deplete the dissolved oxygen (DO) at the expense of semiquinone and quinone formation, favoring the reactive oxygen species (ROS) production to induce RBC disruption and Fe(2+) ion release. To explore this, the in vitro polyphenolics-erythrocyte model (PEM) was established. PEM revealed that the DO was rapidly depleted, leading to the release of a huge amount of Fe (II) ions and hydrogen peroxide (HPO) in a two-phase kinetic pattern. The kinetic coefficients for Fe (II) ion release ranged from 0.347 h(-1) to 0.774 h(-1); and those for Fe (III) ion production were from 6.66 × 10(-3) h(-1) to 8.93 × 10(-3) h(-1). For phase I HPO production, they ranged from 0.236 h(-1) to 0.774 h(-1) and for phase II HPO production from 0.764 h(-1) to 2.560 h(-1) at GA within 6 μM to 14 μM. Thus, evidence obtained from PEM could strongly support the phenomena of CEM. To conclude, GA tends to elicit hypoxia-related inflammation and hemolysis in chicken cervical muscles through its extremely high prooxidant activity.
Cutaneous wounds in adult mammals typically heal by scarring. However, large full-thickness wounds undergo wound-induced hair follicle neogenesis (WIHN), a form of regeneration. Here, we show that WIHN requires transient expression of epidermal Msx2 in two phases: the wound margin early and the wound center late. Msx2 expression is present in the migrating epithelium during early wound healing and then presents in the epithelium and mesenchyme later in the wound center. WIHN is abrogated in germline and epithelial-specific Msx2 mutant mice. Unlike the full-length Msx2 promoter, a minimal Msx2 promoter fails activation in the wound center, suggesting complex regulation of Msx2 expression. The Msx2 promoter binding sites include Tcf/Lef, Jun/Creb, Pax3, and three SMAD sites. However, basal epithelial-induced BMP suppression by noggin overexpression did not affect WIHN. We propose that Msx2 signaling is required for the epidermis to acquire spatiotemporal competence during WIHN. Topologically, hair regeneration dominates in the wound center, coinciding with late Msx2 expression. Together, these results suggest that intrinsic Msx2 expression supports epithelial competency during hair follicle neogenesis. This work provides insight into endogenous mechanisms modulating competency of adult epidermal progenitors for mammalian ectodermal appendage neogenesis, and offers the target Msx2 for future regeneration-promoting therapies.
Gallic acid (3,4,5-trihydroxybenzoic acid) (GA) and other flavanoids are extensively used in nutraceuticals because of their antioxidant and antiinflammatory properties. While examining whether GA is effective in alleviating valproic-acid-induced teratogenesis in a chicken embryo model (CEM), we observed embryo hemorrhage and liposis in the musculi longissimus cervicis. We conducted this study to determine whether GA is inherently teratogenic and the extent to which the risk can be transferred to fetuses. A CEM was used to administer GA at 2, 6, 10, and 14 μM. GA at 2 μM did not exhibit cytotoxicity. At 6, 10, and 14 μM, GA caused severe decreases in body and liver weights, causing -5.6%, -21.3%, and -27.5% body weights and 4.0, 3.8, and 3.2-g, liver weights, respectively, in day-1 chicks. The optimal alive birth rate (or damaging rate) reached 33.3%, 39.4%, and 29.2% at 6, 10, and 14 μM GA, respectively. The damaged tissue was primarily cervical muscle (musculi longissimus cervicis), as evidenced by liposis, Zenker’s necrosis, and hemolysis. The erythrocyte, hemoglobin, eosinophil, lymphocyte, and monocyte counts were severely reduced and PPAR-α was downregulated, whereas the Ras/Raf/JAK/STAT pathway was upregulated. The GA dose required to induce teratogenesis was ≥ 6 μM (1.02 mg/kg), which can be easily consumed by pregnant women in typical teas such as Chinese Pu-’Er and Chinese black teas, indicating a potential risk to human fetuses. GA at doses ≥ 1.02 mg/kg of body weight potentially causes characteristic cerebral hemolysis and liposis in the musculi longissimus cervicis. The mechanism of action of GA is multidisciplinary: The liposis can be ascribed to downregulation of PPAR-α; the erythrocyte hemolysis can be attributed to its unique autooxidative and prooxidant behavior and the inhibition of carbonic anhydrase; and the proliferation and differentiation deficits can be attributed to the upregulation of the Ras/Raf/JAK/STAT pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.