During orthodontic tooth movement, bone resorption occurs at the compression site. However, the mechanism underlying resorption remains unclear. Applying compressive force to human osteoblast-like cells grown in a 3D collagen gel, we examined gene induction by using microarray and RT-PCR analysis. Among 43 genes exhibiting significant changes, cyclo-oxygenase-2, ornithine decarboxylase, and matrix metalloproteinase-3 (MMP-3) were up-regulated, whereas membrane-bound interleukin-1 receptor accessory protein was down-regulated. The MMP-3 protein increases were further confirmed by Western blot. To ascertain whether MMP-3 is up-regulated in vivo by orthodontic force, we examined human bone samples at the compressive site by realigning the angulated molars. Immunohistochemical staining revealed MMP-3 distributed along the compressive site of the bony region within 3 days of compression. Since MMP-3 participates in degradation of a wide range of extracellular matrix molecules, we propose that MMP-3 plays an important role in bone resorption during orthodontic tooth movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.