In response to environmental cues, cells coordinate a balance between anabolic and catabolic pathways. In eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival through activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. Akt-mediated phosphorylation of glycogen synthase kinase-3β (GSK-3β) inhibits its enzymatic activity, thereby stimulating glycogen synthesis. We show that GSK-3β itself inhibits Akt by controlling the mammalian target of rapamycin complex 2 (mTORC2), a key activating kinase for Akt. We found that during cellular stress, GSK-3β phosphorylated the mTORC2 component rictor at serine-1235, a modification that interfered with the binding of Akt to mTORC2. The inhibitory effect of GSK-3β on mTORC2-Akt signaling and cell proliferation was eliminated by blocking phosphorylation of rictor at serine-1235. Thus, in response to cellular stress, GSK-3β restrains mTORC2-Akt signaling by specifically phosphorylating rictor, thereby balancing the activities of GSK-3β and Akt, two opposing players in glucose metabolism.
In animal cells, growth factors coordinate cell proliferation and survival by regulating the phosphoinositide 3-kinase/Akt signaling pathway. Deregulation of this signaling pathway is common in a variety of human cancers. The PI3K-dependent signaling kinase complex defined as mammalian target of rapamycin complex 2 (mTORC2) functions as a regulatory Ser-473 kinase of Akt. We find that activation of mTORC2 by growth factor signaling is linked to the specific phosphorylation of its component rictor on Thr-1135. The phosphorylation of this site is induced by the growth factor stimulation and expression of the oncogenic forms of ras or PI3K. Rictor phosphorylation is sensitive to the inhibition of PI3K, mTOR, or expression of integrin-linked kinase. The substitution of wild-type rictor with its specific phospho-mutants in rictor null mouse embryonic fibroblasts did not alter the growth factor-dependent phosphorylation of Akt, indicating that the rictor Thr-1135 phosphorylation is not critical in the regulation of the mTORC2 kinase activity. We found that this rictor phosphorylation takes place in the mTORC2-deficient cells, suggesting that this modification might play a role in the regulation of not only mTORC2 but also the mTORC2-independent function of rictor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.