The study investigated the effect of taurine on cell viability and neurotrophic gene expression in arsenite-treated human neuroblastoma SH-SY5Y cells. Arsenite-induced intracellular reactive oxygen species (ROS) and interrupted cell cycle in SH-SY5Y cells. In addition, arsenite reduced mitochondria membrane potential (MMP) and decreased neurotrophic gene expressions such as n-myc downstream-regulated gene 4 (NDRG-4), brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT-1) in SH-SY5Y cells. In parallel, taurine prevented cell cycle, restored MMP and reduced the intracellular ROS level, and taurine recovered NDRG-4, BDNF and SIRT-1 gene expressions in arsenite-treated SH-SY5Y cells while taurine alone has no effect on these parameters.
The goal of the study is to investigate the preventive effect of taurine against arsenite-induced arrest of neuronal differentiation in N2a cells. Our results revealed that taurine reinstated the neurite outgrowth in arsenite-treated N2a cells. Meanwhile, arsenite-induced oxidative stress and mitochondrial dysfunction as well as degradation of mitochondria DNA (mtDNA) were also inhibited by co-treatment of taurine. Since oxidative stress and mitochondrial dysfunction is closely associated with endoplasmic reticulum (ER) stress, we further examined indicators of ER stress, 78 kDa glucose-regulated protein (GRP78), and C/EBP-homologous protein (CHOP) protein expression. The results demonstrated that taurine significantly reduced arsenite-induced ER stress in N2a cells. In the parallel experiment, arsenite-induced disruption of intracellular calcium homeostasis was also ameliorated by taurine. The proven bio-function of taurine preserved a preventive effect against deleteriously cross-talking between oxidative stress, mitochondria, and ER. Overall, the results of the study suggested that taurine reinstated neuronal differentiation by inhibiting oxidative stress, ER stress, and mitochondrial dysfunction in arsenite-treated N2a cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.