Mesenchymal stem cells (MSCs), the archetypal multipotent progenitor cells derived in cultures of developed organs, are of unknown identity and native distribution. We have prospectively identified perivascular cells, principally pericytes, in multiple human organs including skeletal muscle, pancreas, adipose tissue, and placenta, on CD146, NG2, and PDGF-Rb expression and absence of hematopoietic, endothelial, and myogenic cell markers. Perivascular cells purified from skeletal muscle or nonmuscle tissues were myogenic in culture and in vivo. Irrespective of their tissue origin, long-term cultured perivascular cells retained myogenicity; exhibited at the clonal level osteogenic, chondrogenic, and adipogenic potentials; expressed MSC markers; and migrated in a culture model of chemotaxis. Expression of MSC markers was also detected at the surface of native, noncultured perivascular cells. Thus, blood vessel walls harbor a reserve of progenitor cells that may be integral to the origin of the elusive MSCs and other related adult stem cells.
Parkinson’s disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.