A disintegrin and metalloprotease-17 (ADAM17) is a major sheddase responsible for the regulation of a wide range of biological processes, like cellular differentiation, regeneration, or cancer progression. Hitherto, the mechanism regulating the enzymatic activity of ADAM17 is poorly understood. Recently, protein-disulfide isomerase (PDI) was shown to interact with ADAM17 and to down-regulate its enzymatic activity. Here we demonstrate by NMR spectroscopy and tandem-mass spectrometry that PDI directly interacts with the membrane-proximal domain (MPD), a domain of ADAM17 involved in its dimerization and substrate recognition. PDI catalyzes an isomerization of disulfide bridges within the thioredoxin motif C600XXC603 of the MPD and results in a drastic structural change between an active open state and an inactive closed conformation. This conformational change of the MPD putatively acts as a molecular switch, facilitating a global reorientation of the extracellular domains in ADAM17 and regulating its shedding activity.
Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography–mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.
The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm's epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.
Top-down mass spectrometry holds tremendous potential for characterization and quantification of intact proteins. So far, however, very few studies have combined top-down proteomics with protein quantification. In view of the success of isobaric mass tags in quantitative bottom-up proteomics, we applied the tandem mass tag (TMT) technology to label intact proteins and examined the feasibility to directly quantify TMT-labeled proteins. A top-down platform encompassing separation via ion-pair reversed-phase liquid chromatography using monolithic stationary phases coupled online to an LTQ-Orbitrap Velos electron-transfer dissociation (ETD) mass spectrometer (MS) was established to simultaneously identify and quantify TMT-labeled proteins. The TMT-labeled proteins were found to be readily dissociated under high-energy collision dissociation (HCD) activation. The liberated reporter ions delivered expected ratios over a wide dynamic range independent of the protein charge state. Furthermore, protein sequence tags generated either by low-energy HCD or ETD activation along with the intact protein mass information allow for confident identification of small proteins below 35 kDa. We conclude that the approach presented in this pilot study paves the way for further developments and numerous applications for straightforward, accurate, and multiplexed quantitative analysis in protein chemistry and proteomics.
The standard strategy for analysis by tandem mass spectrometry of protein phosphorylation at serine or threonine utilizes the neutral loss of H3PO4 (= 97.977/z) from proteolytic peptide molecular ions as marker fragmentation. Manual control of automatically performed neutral loss-based phosphopeptide identifications is strongly recommended, since these data may contain false-positive results. These are connected to the experimental neutral loss m/z error, to competing peptide fragmentation pathways, to limitations in data interpretation software, and to the general growth of protein sequence databases. The fragmentation-related limitations of the neutral loss approach cover (i) the occurrence of abundant 'close-to-98/z' neutral loss fragmentations, (ii) the erroneous assignment of a neutral loss other than loss of H3PO4 due to charge state mix-up, and (iii) the accidental occurrence of any fragment ion in the m/z windows of interest in combination with a charge-state mix-up. The 'close-to-98/z' losses comprise loss of proline (97.053/z), valine (99.068/z), threonine (101.048/z), or cysteine (103.009/z) preferably from peptides with N-terminal sequences PP, VP, TP, or CP, and loss of 105.025/z from alkylated methionine. Confusion with other neutral losses may occur, when their m/z window coincides with a 98/z window as result of a charge state mix-up. Neutral loss of sulfenic acid from oxidized methionine originating from a doubly charged precursor (63.998/2 = 31.999) may thus mimic the loss of phosphoric acid from a triply charged phosphopeptide (97.977/3 = 32.659). As a consequence of the large complexity of proteomes, peptide sequence ions may occur in one of the mass windows of H3PO4 loss around 97.977/z. Practical examples for false-positive annotations of phosphopeptides are given for the first two groups of error. The majority of these can be readily recognized using the guidelines presented in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.