In this report, we demonstrate the implementation of biomimetic nanostructured antireflection coatings with polymethyl methacrylate (PMMA) layer on the micro-textured surface of silicon crystalline solar cells. To reduce cost, the process combines colloidal lithography, cast molding method, and reversal nanoimprint lithography. The technique is simple, low cost, and does not cause damage to the thin and brittle conventional crystalline solar cells. The antireflection properties of this biomimetic nanostructure coating are considered as effective as those of a conventional single-layer SiNx thin film. The resultant structures alone could reduce the average reflectance of solar cell from 13.2% to 7.8% and enhance power conversion efficiency from 12.85% to 14.2%.
In recent years, micro-lens arrays (MLAs) have become important elements of optical systems. One function of MLAs is to create a uniform intensity of light. Compared with one-sided MLAs, the uniformity of light intensity increases with double-sided MLAs. MLAs fabricated by glass can be used in higher temperature environments or in high-energy systems. Glass-based MLAs can be fabricated by laser machining, photolithography, precision diamond grinding process and precision glass molding (PGM) technologies, but laser machining, photolithography and precision diamond grinding process technologies are not the perfect approach for mass production. Therefore, this paper proposes a method to fabricate a mold by laser micro-machining and a double-sided MLA by a PGM process. First, a micro-hole array was fabricated on the surface of a silicon carbide mold. A double-sided MLA using two molds was then formed by a PGM process. In this paper, the PGM process parameters including molding temperature and molding force are discussed. Moreover, the profile of a double-sided MLA is discussed. Finally, a double-sided MLA with a diameter of 20 mm, and lenses with a height of 52 μm, a radius of 851 μm and a pitch of 700 μm were formed on glass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.