An ultrahigh photocurrent gain has been found in the ultraviolet-absorbed GaN nanowires with m-directional long axis grown by chemical vapor deposition. The quantitative results have shown the gain values at 5.0×104–1.9×105 of the GaN nanowires with diameters from 40to135nm are near three orders of magnitude higher than the values of 5.2×101–1.6×102 estimated from the thin film counterparts. The intensity-dependent gain study has shown that the gain value is very sensitive to the excitation intensity following an inverse power law and no gain saturation observed in this investigated intensity range from 0.75to250W∕m2. This behavior has strongly suggested a surface-dominant rather than trap-dominant high gain mechanism in this one-dimensional nanostructure. The strong carrier localization effect induced by the surface electric field in the GaN nanowires is also discussed.
We propose and realize a substrate-free metal-cavity surface-emitting microlaser with both top and sidewall metal and a bottom distributed Bragg reflector as the cavity structure. The transfer-matrix method is used to design the laser structure based on the round-trip resonance condition inside the cavity. The laser is 2.0 m in diameter and 2.5 m in height, and operates at room temperature with continuous-wave mode. Flip-bonding the device to a silicon substrate with a conductive metal provides efficient heat removal. A high characteristic temperature about 425 K is observed from 10 to 27 °C.
Articles you may be interested inStudies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air
A novel three-dimensional (3D) metal-nanocavity (or nano-coin) semiconductor laser suitable for electrical injection is proposed and analyzed. Our design uses metals as both the cavity sidewall and the top/bottom reflectors (i. e., a fully metal encapsulated nanolaser) and maintains the surface-emitting nature. As a result of the large permittivity contrast between the dielectric and metal, the optical energy can be well-confined inside the metal nanocavity. With a proper design and the choice of the HE111 mode, which has the best top surface radiation pattern, a laser with a physical size smaller than 0.01λ(0)(3) is achievable at 1.55 μm wavelength with a reasonable semiconductor gain at room temperature. We provide a detailed theoretical model starting from the waveguide analysis to full 3D structure simulations by taking into account both geometry and metal dispersion. We show a systematic procedure for analyzing this class of 3D metal-cavity (or nano-coin) lasers with discussions on the optimization of the performance such as light output power, threshold reduction, and output beam shaping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.