Abstract-This study develops a high-performance stand-alone photovoltaic (PV) generation system. To make the PV generation system more flexible and expandable, the backstage power circuit is composed of a high step-up converter and a pulsewidthmodulation (PWM) inverter. In the dc-dc power conversion, the high step-up converter is introduced to improve the conversion efficiency in conventional boost converters to allow the parallel operation of low-voltage PV arrays, and to decouple and simplify the control design of the PWM inverter. Moreover, an adaptive total sliding-mode control system is designed for the voltage control of the PWM inverter to maintain a sinusoidal output voltage with lower total harmonic distortion and less variation under various output loads. In addition, an active sun tracking scheme without any light sensors is investigated to make the PV modules face the sun directly for capturing the maximum irradiation and promoting system efficiency. Experimental results are given to verify the validity and reliability of the high step-up converter, the PWM inverter control, and the active sun tracker for the high-performance stand-alone PV generation system. Index Terms-Active sun tracking scheme, adaptive total sliding-mode control (ATSMC), high step-up converter, photovoltaic (PV) generation system, pulsewidth-modulation (PWM) inverter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.