Artificial neural network (ANN) techniques are widely used to screen the data and predict the experimental result in pharmaceutical studies. In this study, a novel dissolution result prediction and screen system with a backpropagation network and regression methods was modeled. For this purpose, 21 groups of dissolution data were used to train and verify the ANN model. Based on the design of input data, the related data were still available to train the ANN model when the formulation composition was changed. Two regression methods, the effective data regression method (EDRM) and the reference line regression method (RLRM), make this system predict dissolution results with a high accuracy rate but use less database than the orthogonal experiment. Based on the decision tree, a data screen function is also realized in this system. This ANN model provides a novel drug prediction system with a decrease in time and cost and also easily facilitates the design of new formulation.
Many researchers have proposed algorithms to improve the network performance of vehicular ad hoc network (VANET) clustering techniques for different applications. The effectiveness of the clustering model is the most important challenge. The K-Means clustering algorithm is an effective algorithm for multi-clusters that can be used in VANETs. The problems with the K-Means algorithm concern the selection of a suitable number of clusters, the creation of a highly reliable cluster, and achieving high similarity within a cluster. To address these problems, a novel method combining a covering rough set and a K-Means clustering algorithm (RK-Means) was proposed in this paper. Firstly, RK-Means creates multi-groups of vehicles using a covering rough set based on effective parameters. Secondly, the K-value-calculating algorithm computes the optimal number of clusters. Finally, the classical K-Means algorithm is applied to create the vehicle clusters for each covering rough set group. The datasets used in this work were imported from Simulation of Urban Mobility (SUMO), representing two highway scenarios, high-density and low-density. Four evaluation indexes, namely, the root mean square error (RMSE), silhouette coefficient (SC), Davies–Bouldin (DB) index, and Dunn index (DI), were used directly to test and evaluate the results of the clustering. The evaluation process was implemented on RK-Means, K-Means++, and OK-Means models. The result of the compression showed that RK-Means had high cluster similarity, greater reliability, and error reductions of 32.5% and 24.2% compared with OK-Means and K-Means++, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.