PurposeGelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive corneal dystrophy that causes severe vision loss. Because of its poor prognosis, there is a demand for novel treatments for GDLD. Here, we establish a new in vitro disease model of GDLD based on immortalized human corneal epithelial (HCE-T) cells.MethodsBy using transcription activator-like effector nuclease plasmids, tumor-associated calcium signal transducer 2 (TACSTD2) and its paralogous gene, epithelial cell adhesion molecule (EpCAM), were knocked out in HCE-T cells. Fluorescence-activated cell sorting was performed to obtain cells in which both TACSTD2 and EpCAM were knocked out (DKO cells). In DKO cells, the expression levels and subcellular localizations of claudin (CLDN) 1, 4, and 7, and ZO-1 were investigated, along with epithelial barrier function. By using DKO cells, the feasibility of gene therapy for GDLD was also investigated.ResultsDKO cells exhibited decreased expression and aberrant subcellular localization of CLDN1 and CLDN7 proteins, as well as decreased epithelial barrier function. Transduction of the TACSTD2 gene into DKO cells nearly normalized expression levels and subcellular localization of CLDN1 and CLDN7 proteins, while significantly increasing epithelial barrier function.ConclusionsWe established an in vitro disease model of GDLD by knocking out TACSTD2 and its paralogous gene, EpCAM, in HCE-T cells. This cell line accurately reflected pathological aspects of GDLD.Translational RelevanceWe expect that the cell line will be useful to elucidate the pathogenesis of GDLD and develop novel treatments for GDLD.
We identified a novel mutation of the tumor-associated calcium signal transducer 2 (TACSTD2) gene in a Japanese patient with gelatinous drop-like corneal dystrophy (GDLD). Genetic analysis revealed a novel homozygous mutation (c.798delG, which may result in frameshift mutation p.Lys267SerfsTer4) in the TACSTD2 gene. This mutated gene was devoid of its original function in helping the claudin (CLDN) 1 and 7 proteins transfer from the cytoplasm to the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.