BackgroundThe effect of malaria in Nigeria is still worrisome and has remained a leading public health issue in the country. In 2016, Nigeria was the highest malaria burden country among the 15 countries in sub-Saharan Africa that accounted for the 80% global malaria cases. The purpose of this study is to utilize appropriate statistical models in identifying socio-economic, demographic and geographic risk factors that have influenced malaria transmission in Nigeria, based on malaria rapid diagnostic test survey results. This study contributes towards re-designing intervention strategies to achieve the target of meeting the Sustainable Development Goals 2030 Agenda for total malaria elimination.MethodsThis study adopted the generalized linear mixed models approach which accounts for the complexity of the sample survey design associated with the data. The 2015 Nigeria malaria indicator survey data of children between 6 and 59 months are used in the study.ResultsFrom the findings of this study, the cluster effect is significant which has suggested evidence of heterogeneity among the clusters. It was found that the vulnerability of a child to malaria infection increases as the child advances in age. Other major significant factors were; the presence of anaemia in a child, an area where a child resides (urban or rural), the level of the mother’s education, poverty level, number of household members, sanitation, age of head of household, availability of electricity and the type of material for roofing. Moreover, children from Northern and South-West regions were also found to be at higher risk of malaria disease and re-infection.ConclusionImprovement of socio-economic development and quality of life is paramount to achieving malaria free Nigeria. There is a strong link of malaria risk with poverty, under-development and the mother’s educational level.
Although malaria burden has declined globally following scale up of intervention, the disease has remained a leading cause of hospitalization and deaths among children aged under-5 years in Nigeria. Malaria is known to be related to climate and environmental conditions. Previous research has usually studied the effects of these factors, neglecting possible correlation between them, high correlation among variables is a source of multicollinearity that induces overfitting in regression modelling. In this paper, a factor analysis was first introduced to circumvent the issue of multicollinearity and a Generalized Additive Model (GAM) was subsequently explored to identify the important risk factors that might influence the prevalence of childhood malaria in Nigeria. The GAM incorporated the complexity of the survey data, while simultaneously modelling the nonlinear and spatial random effects to allow a more precise identification of the major malaria risk factors that influence the geographical distribution of the disease. From our findings, the three latent factor components (constituted by humidity, precipitation, potential evapotranspiration, and wet days/maximum and minimum temperature/proximity to permanent waters, respectively) were significantly associated with malaria prevalence. Our analysis also detected statistically significant and nonlinear effect of altitude: the risk of malaria increased with lower values but declined sharply with higher values. A significant spatial variability in under-5 malaria prevalence across the survey clusters was also observed; malaria burden was higher in the northern part of Nigeria. Investigating the impact of important risk factors and geographical location on childhood malaria is of high relevance for the sustainable development goals (SDGs) 2015-2030 Agenda on malaria eradication, and we believe that the information obtained from this study and the generated risk maps can be useful to effectively target intervention efforts to high-risk areas based on climate and environmental context.
Malaria remains a leading cause of morbidity and mortality among children in Nigeria less than 5 years old (under-5). This study utilized nationally representative secondary data extracted from the 2015 Nigeria Malaria Indicator Survey (NMIS) to investigate the spatial variability in malaria distribution in those under- 5 and to explore the influence of socioeconomic and demographic factors on malaria prevalence in this population group. To account for spatial correlation, a Spatially Generalized Linear Mixed Model (SGMM) was employed and predictive risk maps was developed using Kriging. Highly significant spatial variability in under-5 malaria distribution was observed (p<0.0001) with a higher likelihood of malaria prevalence in this group in the North-west and North-east of the country. The number of malaria infections increased with age, children aged between 49-59 months were found to be at a higher risk (Odds Ratio=4.680, 95% CI=3.674 to 5.961 at p<0.0001). After accounting for spatial correlation, we observed a strong significant association between the non-availability or non-use of mosquito bed-nets, low household socioeconomic status, low level of mother’s educational attainment, family size, anaemia prevalence, rural type of residence and under-5 malaria prevalence. Faced with a high rate of under-5 mortality due to malaria in Nigeria, targeted interventions (which requires the identification of the child’s location) may reduce malaria prevalence, and we conclude that socioeconomic impediments need to be confronted to reduce the burden of childhood malaria infection.
BackgroundIn 2021, an estimated 38 million people were living with human immunodeficiency virus (HIV) globally, with over two-thirds living in African regions. In South Africa, ~20% of South African adults are living with HIV. Accurate estimation of the risk factors and spatial patterns of HIV risk using individual-level data from a nationally representative sample is invaluable for designing geographically targeted intervention and control programs.MethodsData were obtained from the 2016 South Africa Demographic and Health Survey (SDHS16). The study involved all men and women aged 15 years and older, who responded to questions and tested for HIV in the SDHS. Generalized additive models (GAMs) were fitted to our data with a nonparametric bivariate smooth term of spatial location parameters (X and Y coordinates). The GAMs were used to assess the spatial disparities and the potential contribution of sociodemographic, biological, and behavioral factors to the spatial patterns of HIV prevalence in South Africa.ResultsA significantly highest risk of HIV was observed in east coast, central and north-eastern regions. South African men and women who are widowed and divorced had higher odds of HIV as compared to their counterparts. Additionally, men and women who are unemployed had higher odds of HIV as compared to the employed. Surprisingly, the odds of HIV infection among men residing in rural areas were 1.60 times higher (AOR 1.60, 95% CI 1.12, 2.29) as compared to those in urban areas. But men who were circumcised had lower odds of HIV (AOR 0.73, 95% CI 0.52, 0.98), while those who had STI in the last 12 months prior to the survey had higher odds of HIV (AOR 1.76, 95% CI 1.44, 3.68).ConclusionSpatial heterogeneity in HIV risk persisted even after covariate adjustment but differed by sex, suggesting that there are plausible unobserved influencing factors contributing to HIV uneven variation. This study's findings could guide geographically targeted public health policy and effective HIV intervention in South Africa.
Background Childhood anaemia is highly prevalent in Nigeria. According to the 2015 Nigeria Malaria Indicator Survey (NMIS) report, more than 68% of children aged 6-59 months were found to be anaemic. This estimate is far above the World Health Organization’s 40% cut off point which classifies anaemia a severe public health challenge in the country. Identifying environmental, health, socioeconomic and demographic influential factors and mapping the prevalence of anaemia can help guide geographically targeted intervention programmes to reduce the risk of anaemia associated morbidity among vulnerable children in Nigeria. Methods Geographically linked national level datasets obtained from the 2015 Nigeria Demographic and Health Survey (NDHS) and Malaria Indicator Survey (NMIS) programmes were used for this study. For the analysis, a binary structured additive regression (BSAR) model was explored. This model incorporated a Markov Random Field (MRF) prior, with posterior parameters estimated via Bayesian framework. Results After accounting for the spatial heterogeneity, we found a strong negative association between the odds of anaemia and the child’s demographic variables in terms of increasing age and being female. Increased odds of anaemia were also associated with child’s malaria and fever status, living in a rural environment, lower household wealth quintile, having younger and illiterate mothers. We also found that a decreased distance to vegetated areas was associated with increased childhood anaemia risk, while the odds of anaemia decreased as cluster altitude increased at 95% credible interval. The maps of the posterior means of the spatial random effects revealed evidence of spatial variation in the odds of childhood anaemia, while accounting for the model covariates (Fig. 4). Greater risk of anaemia was observed for children who resided in Adamawa, Ebonyi, Edo, Cross river, FCT, Jigawa, Kaduna, Kano and Kebbi states in Nigeria. Conclusions In this study, a binary structured additive regression model was utilized, allowing for a flexible semiparametric predictor that accounted for the effects of different types of covariates, while simultaneously incorporating spatial variables directly. Our results revealed significant spatial variability of childhood anaemia, suggesting that spatially targeted interventions could result in efficiency gains for anaemia control in Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.