Deep learning has emerged as a state-of-the-art learning technique across a wide range of applications, including image recognition, object detection and localisation, natural language processing, prediction and forecasting systems. With significant applicability, deep learning could be used in new and broader areas of applications, including remanufacturing. Remanufacturing is a process of taking used products through disassembly, inspection, cleaning, reconditioning, reassembly and testing to ascertain that their condition meets new products conditions with warranty. This process is complex and requires a good understanding of the respective stages for proper analysis. Inspection is a critical process in remanufacturing, which guarantees the quality of the remanufactured products. It is currently an expensive manual operation in the remanufacturing process that depends on operator expertise, in most cases. This research investigates the application of deep learning algorithms to inspection in remanufacturing, towards automating the inspection process. This paper presents a novel vision-based inspection system based on deep convolution neural network (DCNN) for eight types of defects, namely pitting, rust, cracks and other combination faults. The materials used for this feasibility study were 100 cm × 150 cm mild steel plate material, purchased locally, and captured using a USB webcam of 0.3 megapixels. The performance of this preliminary study indicates that the DCNN can classify with up to 100% accuracy on validation data and above 96% accuracy on a live video feed, by using 80% of the sample dataset for training and the remaining 20% for testing. Therefore, in the remanufacturing parts inspection, the DCNN approach has high potential as a method that could surpass the current technologies used in the design of inspection systems. This research is the first to apply deep learning techniques in remanufacturing inspection. The proposed method offers the potential to eliminate expert judgement in inspection, save cost, increase throughput and improve precision. This preliminary study demonstrates that deep learning techniques have the potential to revolutionise inspection in remanufacturing. This research offers valuable insight into these opportunities, serving as a starting point for future applications of deep learning algorithms to remanufacturing.
In the last decade, deep learning(DL) has witnessed excellent performances on a variety of problems, including speech recognition, object recognition, detection, and natural language processing (NLP) among many others. Of these applications, one common challenge is to obtain ideal parameters during the training of the deep neural networks (DNN). These typical parameters are obtained by some optimisation techniques which have been studied extensively. These research have produced state-of-art(SOTA) results on speed and memory improvements for deep neural networks(NN) architectures. However, the SOTA optimisers have continued to be an active research area with no compilations of the existing optimisers reported in the literature. This paper provides an overview of the recent advances in optimisation algorithms and techniques used in DNN, highlighting the current SOTA optimisers, improvements made on these optimisation algorithms and techniques, alongside the trends in the development of optimisers used in training DL based models. The results of the search of the Scopus database for the optimisers in DL provides the articles reported as the summary of the DL optimisers. From what we can tell, there is no comprehensive compilation of the optimisation algorithms and techniques so far developed and used in DL research and applications, and this paper summarises these facts.
Remanufacturing is a crucial component of the circular economy concept which emphasises sustainable consumption habits. This study proposes a novel automated sorting system for remanufacturing which is based on deep convolutional neural networks(CNN). To demonstrate its applicability, the proposed deep learning (DL) system was used to distinguish among dry, wet, oily and defected surfaces. The test was conducted on four locally sourced 3" x 6 " plates. Sample image data were captured using a USB webcam. The network training was done with 75% of the data while the balance data were used for testing. In this preliminary study, the DCNN classified the features with up to 99.74% accuracy on validation data and above 96% accuracy on live video feed; demonstrating that it can accurately sort components. This study is the first to propose a low-cost sorting system for remanufacturing based on the deep CNN and logic gates. The results show that the method is an accurate, reliable, cost-effective and fast technique that can potentially outperform existing sorting systems in the remanufacturing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.