Thermoplastic polyurethane, based on 4,4'-diphenylmethane diisocyanate and polyether polyol, was degraded by glycol and ethanolamine at 170 o C. Optimum conditions for the glycolysis of thermoplastic polyurethane were investigated by adjusting the ratio of polymer to degradation reagent, glycol to ethanolamine as well as the reaction temperature. The degradation reaction was conducted under nitrogen atmosphere and accelerated by catalysts such as lithium acetate, which was evidenced by lowering the degradation temperature as well as the amounts of degradation reagent. The decomposition products were completely separated into two layers. The upper liquid layer was a polyether polyol, which was characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The present glycolysis procedure allows a simple recycling of the hydroxyl terminated polyol in pure form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.