Detection of disease at the starting stage is a very crucial problem. As the population growth increases, the risk of death incurred by breast cancer rises exponentially. Breast cancer is the most common cancer in women, and it is also the most dangerous of all cancers. Deaths because of breast cancer have b een increasing in recent times. Earlier detection of the disease followed by treatment can reduce the risk and increase survival chances. There will be cases where even medical professionals can make mistakes in identifying the disease. This project deals with the detection of Breast cancer using the cell data of the tumor present in the breast. So, with the help of technologies in machine learning and artificial intelligence can substantially improve the diagnosis accuracy. The development of this project is beneficial in medical decision support systems. Several machine learning techniques, namely Adaboost, multi-layer perceptron (MLP) and stacking classifier; were used, and among all the algorithms, the stacking classifier results in the best accuracy. The accuracies 95.6%, 97.1%, and 99.2% respectively.
<span lang="EN-US">Due to population growth, early illness detection is getting more challenging. Breast cancer is the second-deadliest malignancy. An estimated one million people are newly diagnosed with the disease annually in India. Most cases are never diagnosed because they are either ignored or not reported. Also, secondary malignancies may develop after a breast cancer recurrence, including those of the brain, lungs, and bones. Early detection and treatment of people with recurring breast cancer may help prevent secondary cancers and other disorders. By examining cell and tumour data as well as data from other diseases, this project hopes to overcome this obstacle and more accurately diagnose breast cancer. Accurate diagnosis of breast cancer may be achieved with the use of machine learning techniques. The effort focuses on recurring breast cancer and aims to efficiently identify it. In ensemble learning, decision trees filter out non-essential qualities. Cancer recurrences and non-recurrences are distinguished using voting classifiers. The soft voting classifier classifies a variety of data sets with 98.24% accuracy. The proposed model has an accuracy of 0.97, a recall of 0.97, an F1-Score of 0.969, and a Choen kappa score of 0.9655, as stated by the recommended model.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.