Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly resulted in a global pandemic with approximately 4 million deaths. Effective oral antiviral agents are urgently needed to treat coronavirus disease-2019 (COVID-19), block SARS-CoV-2 transmission, and prevent progression to severe illness. Molnupiravir (formerly EIDD-2801), a prodrug of beta-D-N4-hydroxycytidine (EIDD-1931) and an inhibitor of RNA-dependent RNA polymerase, possesses significant activity against SARS-CoV-2. Its prophylactic efficacy has been evidenced in a ferret model. Two phase-I trials (NCT04392219 and NCT04746183) have demonstrated that oral molnupiravir is safe and well-tolerated at therapeutic doses. After five-days of oral molnupiravir therapy, satisfactory efficacies, assessed by eliminating nasopharyngeal virus in patients with early and mild COVID-19, were disclosed in two phase-II trials (NCT04405739 and NCT 04405570). Two phase-II/III trials, NCT04575597 and NCT04575584, with estimated enrollments of 1850 and 304 cases, respectively, are ongoing. The NCT04575597 recently released that molnupiravir significantly reduced the risk of hospitalization or death in adults experiencing mild or moderate COVID-19. To benefit individual and public health, clinical applications of molnupiravir to promptly treat COVID-19 patients and prevent SARS-CoV-2 transmission may be expected.
Background: Cefazolin is in vitro active against wild isolates of Escherichia coli, Klebsiella species, and Proteus mirabilis (EKP), but clinical evidence supporting the contemporary susceptibility breakpoint issued by the Clinical and Laboratory Standards Institute (CLSI) are limited. Methods: Between 2010 and 2015, adults with monomicrobial community-onset EKP bacteremia with definitive cefazolin treatment (DCT) at two hospitals were analyzed. Cefazolin minimum inhibitory concentrations (MICs) were correlated with clinical outcomes, including primary (treatment failure of DCT) and secondary (30-day mortality after bacteremia onset, recurrent bacteremia, and mortality within 90 days after the end of DCT) outcomes. Results: Overall, 466 bacteremic episodes, including 340 (76.2%) episodes due to E. coli, 90 (20.2%) Klebsiella species, and 16 (3.6%) P. mirabilis isolates, were analyzed. The mean age of these patients was 67.8 years and female-predominated (68.4%). A crude 15- and 30-day mortality rate was 0.7% and 2.2%, respectively, and 11.2% experienced treatment failure of DCT. A significant linear-by-linear association of cefazolin MICs, with the rate of treatment failure, 30-day crude mortality, recurrent bacteremia or 90-day mortality after the DCT was present (all γ = 1.00, p = 0.01). After adjustment, the significant impact of cefazolin MIC breakpoint on treatment failure and 30-day crude mortality was most evident in 2 mg/L (>2 mg/L vs. ≤2 mg/L; adjusted hazard ratio, 3.69 and 4.79; p < 0.001 and 0.02, respectively). Conclusion: For stabilized patients with community-onset EKP bacteremia after appropriate empirical antimicrobial therapy, cefazolin might be recommended as a definitive therapy for cefazolin-susceptible EKP bacteremia, based on the contemporary CLSI breakpoint.
Background: The clinical impact of ST (sequence type) 131 in adults with community-onset Escherichia coli bacteremia remains controversial. Methods: Clinical data of 843 adults presenting with community-onset monomicrobial E. coli bacteremia at a medical center between 2008 and 2013 were collected. E. coli isolates were genotyped by a multiplex polymerase chain reaction to detect ST131 and non-ST131 clones. Results: Of 843 isolates from 843 patients with a mean age of 69 years, there were 102 (12.1%) isolates of ST131. The ST131 clone was more likely to be found in the elderly (76.5% vs. 64.0%; p = 0.01) and in nursing-home residents (12.7% vs. 3.8%; p < 0.001) than non-ST131 clones. Furthermore, the ST131 clone was associated with a longer time to appropriate antibiotic therapy (2.6 vs. 0.8 days; p = 0.004) and a higher 28-day mortality rate (14.7% vs. 6.5%, p = 0.003). In the Cox regression analysis with an adjustment of independent predictors, the ST131 clone exhibited a significant adverse impact on 28-day mortality (adjusted odds ratio (aOR), 2.18; p = 0.02). The different impact of the ST131 clone on 28-day mortality was disclosed in the non-ESBL (aOR 1.27; p = 0.70) and ESBL (aOR 10.19; p = 0.048) subgroups. Conclusions: Among adults with community-onset E. coli bacteremia, the ST131 clone was associated with higher 28-day mortality, particularly in those infected by ESBL producers.
Introduction: Bacteremia is a common but life-threatening infectious disease. However, a well-defined rule to assess patient risk of bacteremia and the urgency of blood culture is lacking. The aim of this study is to establish a predictive model for bacteremia in septic patients using available big data in the emergency department (ED) through logistic regression and other machine learning (ML) methods. Material and Methods: We conducted a retrospective cohort study at the ED of National Cheng Kung University Hospital in Taiwan from January 2015 to December 2019. ED adults (≥18 years old) with systemic inflammatory response syndrome and receiving blood cultures during the ED stay were included. Models I and II were established based on logistic regression, both of which were derived from support vector machine (SVM) and random forest (RF). Net reclassification index was used to determine which model was superior. Results: During the study period, 437,969 patients visited the study ED, and 40,395 patients were enrolled. Patients diagnosed with bacteremia accounted for 7.7% of the cohort. The area under the receiver operating curve (AUROC) in models I and II was 0.729 (95% CI, 0.718–0.740) and 0.731 (95% CI, 0.721–0.742), with Akaike information criterion (AIC) of 16,840 and 16,803, respectively. The performance of model II was superior to that of model I. The AUROC values of models III and IV in the validation dataset were 0.730 (95% CI, 0.713–0.747) and 0.705 (0.688–0.722), respectively. There is no statistical evidence to support that the performance of the model created with logistic regression is superior to those created by SVM and RF. Discussion: The advantage of the SVM or RF model is that the prediction model is more elastic and not limited to a linear relationship. The advantage of the LR model is that it is easy to explain the influence of the independent variable on the response variable. These models could help medical staff identify high-risk patients and prevent unnecessary antibiotic use. The performance of SVM and RF was not inferior to that of logistic regression. Conclusions: We established models that provide discrimination in predicting bacteremia among patients with sepsis. The reported results could inspire researchers to adopt ML in their development of prediction algorithms.
Background: For early recognition of patients with sepsis, quick Sequential Organ Failure Assessment (qSOFA) was proposed by Sepsis-3 criteria as initial sepsis identification outside of intensive care units. However, the new definition has subsequently led to controversy and prompted much discussion for delayed treatment efforts. We aimed to validate Sepsis-3 criteria on bacteremia patients by investigating prognostic impacts of inappropriate administration of empirical antimicrobial therapy (EAT) and delayed source control (SC) compared to Sepsis-2 criteria.Methods: In the multicenter cohort of adults with community-onset bacteremia in emergency departments (EDs), adverse effects of delayed treatment efforts on 30-day mortality were examined in septic and non-septic patients by fulfilling the Sepsis-2 or Sepsis-3 criteria using the Cox regression model after adjusting independent determinants of mortality.Results: Of the 3,898 total adults, septic patients accounted for 92.8% (3,619 patients) by Sepsis-2 criteria (i.e., SIRS criteria). Using Sepsis-3 criteria, 1,827 (46.9%) patients were diagnosed with early sepsis (i.e., initial qSOFA scores ≥ 2) in EDs and 2,622 (67.3%) with sepsis during hospitalization (i.e., increased SOFA scores of ≥ 2 from ED arrival). The prognostic impacts of inappropriate EAT or delayed SC (for complicated bacteremia) were both significant in septic patients with fulfilling the Sepsis-2 or Sepsis-3 (i.e., SOFA) criteria, respectively. Meanwhile, these delayed treatment efforts trivially impact prognoses of non-septic patients recognized by the Sepsis-2 or Sepsis-3 (i.e., SOFA) definitions. Notably, prognostic effects of inappropriate EAT or delayed SC were disclosed for septic patients in EDs, specifically those with qSOFA scores of ≥ 2, and prognostic impacts of delayed treatment efforts remained significant for patients initially recognized early as being non-septic (i.e., initial qSOFA scores of <2).Conclusions: For patients with community-onset bacteremia, inappropriate EAT and delayed SC might result in unfavorable outcomes of patients early identified as being non-septic on ED arrival based on the qSOFA scores (by Sepsis-3 criteria). Accordingly, a more prudent diagnosis of sepsis adopted among bacteremia patients in the ED is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.