We report on novel contact-lens-shaped silicon integrated circuit chip technology for applications such as forming a conforming retinal prosthesis. This is achieved by means of patterning thin films of high residual stress on top of a shaped thin silicon substrate. Several strategies are employed to achieve curvatures of various amounts. Firstly, high residual stress on a thin film makes a thin chip deform into a designed three-dimensional shape. Also, a series of patterned stress films and ‘petal-shaped’ chips were fabricated and analyzed. Large curvatures can also be formed and maintained by the packaging process of bonding the chips to constraining elements such as thin-film polymer ring structures. As a demonstration, a complementary metal oxide semiconductor transistor (CMOS) image-sensing retina chip is made into a contact-lens shape conforming to a human eyeball 12.5 mm in radius. This non-planar and flexible chip technology provides a desirable device surface interface to soft tissues or non-planar bio surfaces and opens up many other possibilities for biomedical applications.
We report a novel non-planar flexible silicon chip technology by means of patterning thin films of high residual stress on top of shaped thin silicon substrate. High residual stresses of thin films make thin chip deform into designed three-dimensional shapes. In this study, a series of patterned stress films and "petal-like" chips were fabricated and analyzed. Large curvatures can also be formed and maintained by the packaging process bonding the chips to constraining elements such as thin-film polymer ring structures. As a demonstration, a CMOS image-sensing retina chip is made into a contact-lens shape conforming to a human eyeball 12.5 m in radius. This non-planar and flexible chip technology provides a desirable device surface interface to soft or non-planar bio surfaces and opens up possibilities for many biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.