The effect of conventional Perovskite solar cells (PSCs) by using different concentration and spin-coating speeds of titanium dioxide (TiO2) as an electron transport layer (ETL) was studied. The influence of TiO2 based on device structure: fluorine-doped tin oxide substrate/TiO2/Perovskite (CH3NH3PbI3)/2,2′,7,7′-Tetrakis[N,N-di(4-methoxyp phenyl)amino]-9,9′-spirobifluorene/silver, is also studied. The spin-coating speed is varied in a range from 1000 to 3000 rpm to get optimal performance of device. The optimized power conversion efficiency (PCE) of PSCs with original concentration (OC) and double concentration (DC) TiO2 is 8.74 and 9.93%, respectively. The reason is attributed to excellent absorption in shorter wavelength, compact characteristic, and suitable thickness of TiO2, leading to perfect short-circuit current density (Jsc), lower series resistance (Rs), and higher fill factor (FF) of 0.75. Besides, recombination of electron and hole is also decreased due to the compact feature, leading to higher open-circuit voltage (VOC) of 0.91 V.
An optimized hybrid planar heterojunction (PHJ) of small molecule organic solar cells (SM-OSCs) based on copper phthalocyanine (CuPc) as donor and fullerene (C 60 ) as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO 3 and pentacene as double anode buffer layers (ABL), also known as hole extraction layer (HEL). A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C 60 /BCP/Ag cells and the new ITO/double ABL/CuPc/C 60 /BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (V oc ), fill factor (FF), and lifetime in this work compared to monolayer of ABL.
A novel LED uniform surface light structure is devised for the use of lighting, especially for a large-size edge-type backlight unit (BLU). Two kinds of embodiments are proposed in this work. Simulation results demonstrate their high efficiency and high uniformity in terms of light extraction and illuminance performance, respectively.
A diffusive solar cell window comprises a diffusion plate with TiO2nanoparticles sandwiched between two glass layers. It is a simple, inexpensive, easy-to-made, and highly reliable transparent solar energy module. To improve its power generation efficiency as well as maintain indoor natural lighting, we examined the scattering mechanism in the diffusion plate with TiO2nanoparticles within a diffusive solar cell window by Mie scattering simulations. In this work, a multiwavelength ASAP ray tracing model for a diffusive solar cell window with acceptable accuracy was developed to investigate the influence of the diffusion plate design parameter, mainly concentration of a diffusion plate with determined particle size distribution, on power generation efficiency and color shift of transmitted sun light. A concept of “effective average radius” was proposed to account for the equivalent scattering effect of a size distribution of quasispherical particles. Simulation results demonstrated that both the transmitted light and its correlated color temperature decreased as the concentration increased for a large-size diffusive solar cell window. However, there existed a maximum power generation efficiency at around 160 ppm concentration. The optimal design for a large-size diffusion plate inside a diffusive solar cell window by taking indoor lighting into account was suggested based on the simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.