Integrin-linked kinase (ILK) represents a relevant target for cancer therapy in light of its role in promoting oncogenesis and tumor progression. Through the screening of an in-house focused compound library, we identified N-Methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-(4′-(trifluoromethyl)-[1,1′-biphenyl]-4-yl)-1H-pyrazol-3-yl)propanamide (22) as a novel ILK inhibitor (IC50, 0.6 μM), which exhibited high in vitro potency against a panel of prostate and breast cancer cell lines (IC50, 1 – 2.5 μM), while normal epithelial cells were unaffected. Compound 22 facilitated the dephosphorylation of Akt at Ser-473 and other ILK targets, including glycogen synthase kinase-3β and myosin light chain. Moreover, 22 suppressed the expression of the transcription/translation factor YB-1 and its targets HER2 and EGFR in PC-3 cells, which could be rescued by the stable expression of constitutively active ILK. Evidence indicates that 22 induced autophagy and apoptosis, both of which were integral to its antiproliferative activity. Together, this broad spectrum of mechanisms underlies the therapeutic potential of 22 in cancer treatment, which is manifested by its in vivo efficacy as a single oral agent in suppressing PC-3 xenograft tumor growth.
This study investigates the mechanism by which histone deacetylase (HDAC) inhibitors up-regulate histone H3 lysine 4 (H3K4) methylation. Exposure of LNCaP prostate cancer cells and the prostate tissue of transgenic adenocarcinoma of the mouse prostate mice to the pan-and class I HDAC inhibitors ( -275), and vorinostat led to differential increases in H3K4 methylation. Chromatin immunoprecipitation shows that this accumulation of methylated H3K4 occurred in conjunction with decreases in the amount of the H3K4 demethylase RBP2 at the promoter of genes associated with tumor suppression and differentiation, including KLF4 and E-cadherin. This finding, together with the HDAC inhibitor-induced up-regulation of KLF4 and E-cadherin, suggests that HDAC inhibitors could activate the expression of these genes through changes in histone methylation status. Evidence indicates that this up-regulation of H3K4 methylation was attributable to the suppressive effect of these HDAC inhibitors on the expression of RBP2 and other JARID1 family histone demethylases, including PLU-1, SMCX, and LSD1, via the down-regulation of Sp1 expression. Moreover, shRNA-mediated silencing of the class I HDAC isozymes 1, 2, 3, and 8, but not that of the class II isozyme HDAC6, mimicked the drug effects on H3K4 methylation and H3K4 demethylases, which could be reversed by ectopic Sp1 expression. These data suggest a cross-talk mechanism between HDACs and H3K4 demethylases via Sp1-mediated transcriptional regulation, which underlies the complexity of the functional role of HDACs in the regulation of histone modifications.
Accumulating evidence suggests the therapeutic potential of the immunosuppressive agent FTY720 (fingolimod) in hepatocellular carcinoma (HCC). Based on our previous finding that FTY720 mediates apoptosis in HCC cells by activating reactive oxygen species (ROS)-protein kinase (PK)Cδ signaling independent of effects on sphingosine-1-phosphate (S1P) receptors, we embarked on the pharmacological exploitation of FTY720 to develop a non-immunosuppressive analogue with antitumor activity. This effort led to the development of OSU-2S, which exhibits higher potency than FTY720 in suppressing HCC cell growth through PKCδ activation. In contrast to FTY720, OSU-2S was not phosphorylated by sphingosine kinase (SphK)2 in vitro, and did not cause S1P1 receptor internalization in HCC cells or T lymphocyte homing in immunocompetent mice. Though devoid of S1P1 receptor activity, OSU-2S exhibited higher in vitro antiproliferative efficacy relative to FTY720 against HCC cells without cytotoxicity in normal hepatocytes. Several lines of pharmacological and molecular genetic evidence indicate that ROS-PKCδ-caspase-3 signaling underlies OSU-2S-mediated antitumor effects, and that differences in the antitumor activity between FTY720 and OSU-2S were attributable to SphK2-mediated phosphorylation of FTY720, which represents a metabolic inactivation of its antitumor activity. Finally, OSU-2S exhibited high in vivo potency in suppressing xenograft tumor growth in both ectopic and orthotopic models without overt toxicity. Conclusion: Using the molecular platform of FTY720, we developed OSU-2S, a novel PKCδ-targeted antitumor agent, which is devoid of S1P1 receptor activity and is highly effective in suppressing HCC tumor growth in vivo. These findings suggest that OSU-2S has clinical value in therapeutic strategies for HCC and warrants continued investigation in this regard.
Vitamin E is a fat-soluble vitamin that includes isomers of tocopherols and tocotrienols which are known for their antioxidant properties. Tocopherols are the predominant form encountered in the diet and through supplementation, and have garnered interest for their potential cancer therapeutic and chemopreventive effects, which include the dephosphorylation of Akt, a serine/threonine kinase that plays a pivotal role in important cellular processes, such as cell growth, survival, metabolism and motility. Full catalytic activation of Akt requires phosphorylation at both Thr308 and Ser473. Dephosphorylation of Ser473 drastically reduces Akt catalytic activity and the number of downstream substrates it can regulate. The mechanism by which α- and γ-tocopherol facilitate the selective dephosphorylation of the kinase Akt at Ser473 was investigated. We showed that this site-specific Akt dephosphorylation was mediated through the pleckstrin homology (PH) domain-dependent recruitment to the plasma membrane of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1), a phosphatase that dephosphorylates Akt at Ser473. The ability of α- and γ-tocopherol to induce PHLPP-mediated Akt inhibition established PHLPP as a “druggable” target. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential membrane recruitment of these proteins. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. These findings describe a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, thereby providing insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain-targeted Akt inhibitors.
Although the rictor-mTOR complex (mTORC2) has been shown to act as phosphoinositide-dependent kinase (PDK)2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK) versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial-mesenchymal transition in MDA-MB-468 and PC-3 cells. Thus, we hypothesize that ILK might bestow growth advantage and metastatic potential in the course of tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.