Spontaneous transformation of the thermally stable [HS](-)-bound {Fe(NO)2}(9) dinitrosyl iron complex (DNIC) [(HS)2Fe(NO)2](-) (1) into [(NO)2Fe(μ-S)]2(2-) (Roussin's red salt (RRS)) along with release of H2S, probed by NBD-SCN (NBD = nitrobenzofurazan), was observed when DNIC 1 was dissolved in water at ambient temperature. The reversible transformation of RRS into DNIC 1 (RRS → DNIC 1) in the presence of H2S was demonstrated. In contrast, the thermally unstable hydrosulfide-containing mononitrosyl iron complex (MNIC) [(HS)3Fe(III)(NO)](-) (3) and [Fe(III)(SH)4](-) (5) in THF/DMF spontaneously dimerized into the first structurally characterized Fe(III)-hydrosulfide complexes [(NO)(SH)Fe(μ-S)]2(2-) (4) with two {Fe(NO)}(7) motifs antiferromagnetically coupled and [(SH)2Fe(μ-S)]2(2-) (6) resulting from two Fe(III) (S = 5/2) centers antiferromagnetically coupled to yield an S = 0 ground state with thermal occupancy of higher spin states, respectively. That is, the greater the number of NO ligands bound to [2Fe2S], the larger the antiferromagnetic coupling constant. On the basis of DFT computation and the experimental (and calculated) reduction potential (E1/2) of complexes 1, 3, and 5, the NO-coordinate ligand(s) of complexes 1 and 3 serves as the stronger electron-donating ligand, compared to thiolate, to reduce the effective nuclear charge (Zeff) of the iron center and prevent DNIC 1 from dimerization in an organic solvent (MeCN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.