Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy.
Phase space matching between two plasma-accelerator (PA) stages and between a PA and a traditional accelerator component is a critical issue for emittance preservation of beams accelerated by PAs. The drastic differences of the transverse focusing strengths as the beam propagates between different stages and components may lead to a catastrophic emittance growth in the presence of both finite energy spread and lack of proper matching. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to provide exact phase space matching to properly transport the electron beam through two such stages with negligible emittance growth. Theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained.
Enhancement of relativistic third-harmonic generation by using an optically preformed periodic plasma waveguide was achieved. Resonant dependence of harmonic intensity on plasma density and density modulation parameters was observed, which is a distinct characteristic of quasi-phase-matching. The results demonstrate the potential of a modulated plasma waveguide in high-field applications.
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multidimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity I, lasers with longer/shorter wavelength λ have larger/smaller ponderomotive potential (∝ Iλ 2 ). The two-color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g., a 10 μm CO 2 laser) due to its very large ponderomotive potential. On the other hand, a short wavelength laser can produce electrons with very small residual momenta (p ⊥ ∼ a 0 ∼ ffiffi I p λ) inside the wake, leading to electron beams with very small normalized emittances (tens of nm). Using particle-in-cell simulations we show that a ∼10 fs electron beam with ∼4 pC of charge and a normalized emittance of ∼50 nm can be generated by combining a 10 μm driving laser with a 400 nm injection laser, which is an improvement of more than 1 order of magnitude compared to the typical results obtained when a single wavelength laser is used for both the wake formation and ionization injection. With the transverse colliding geometry, simulations show that similarly low emittance and much lower slice energy spread (∼30 keV, comparing with the typical value of few MeV in the longitudinal injection scheme) can be simultaneously obtained for electron beams with a few pC charge. Such low slice energy spread may have significant advantages in applications relevant to future coherent light sources driven by plasma accelerators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.