DNA origami nanocarriers have emerged as a promising tool for many biomedical applications, such as biosensing, targeted drug delivery, and cancer immunotherapy. These highly programmable nanoarchitectures are assembled into any shape or size with nanoscale precision by folding a single-stranded DNA scaffold with short complementary oligonucleotides. The standard scaffold strand used to fold DNA origami nanocarriers is usually the M13mp18 bacteriophage’s circular single-stranded DNA genome with limited design flexibility in terms of the sequence and size of the final objects. However, with the recent progress in automated DNA origami design—allowing for increasing structural complexity—and the growing number of applications, the need for scalable methods to produce custom scaffolds has become crucial to overcome the limitations of traditional methods for scaffold production. Improved scaffold synthesis strategies will help to broaden the use of DNA origami for more biomedical applications. To this end, several techniques have been developed in recent years for the scalable synthesis of single stranded DNA scaffolds with custom lengths and sequences. This review focuses on these methods and the progress that has been made to address the challenges confronting custom scaffold production for large-scale DNA origami assembly.
DNA hydrogels are self-assembled biomaterials that rely on Watson–Crick base pairing to form large-scale programmable three-dimensional networks of nanostructured DNA components. The unique mechanical and biochemical properties of DNA, along with its biocompatibility, make it a suitable material for the assembly of hydrogels with controllable mechanical properties and composition that could be used in several biomedical applications, including the design of novel multifunctional biomaterials. Numerous studies that have recently emerged, demonstrate the assembly of functional DNA hydrogels that are responsive to stimuli such as pH, light, temperature, biomolecules, and programmable strand-displacement reaction cascades. Recent studies have investigated the role of different factors such as linker flexibility, functionality, and chemical crosslinking on the macroscale mechanical properties of DNA hydrogels. In this review, we present the existing data and methods regarding the mechanical design of pure DNA hydrogels and hybrid DNA hydrogels, and their use as hydrogels for cell culture. The aim of this review is to facilitate further study and development of DNA hydrogels towards utilizing their full potential as multifeatured and highly programmable biomaterials with controlled mechanical properties.
Near-infrared photoacoustic imaging (NIR-PAI) combines the advantages of optical and ultrasound imaging to provide anatomical and functional images of tissues with high resolution. Although NIR-PAI is promising, its wide application is hindered by the limited availability of NIR contrast agents. J-aggregates (JA) made of indocyanine green dye (ICG) represent an attractive class of biocompatible contrast agents for PAI. Here, we present a facile synthesis method that combines ICG and ICG-azide dyes for producing contrast agents with tunable size down to 230 nm and allows direct functionalization with targeting moieties. The ICG-JA platform has high photostability and a PA-signal amplitude that is two times stronger than whole blood. The targeting ability of ICG-JA was validated in vitro using HeLa cells. The ICG-JA was then injected into mice and in vivo NIR-PAI showed enhanced visualization of liver and spleen for 90 minutes post-injection with a contrast-to-noise ratio of 2.42.
Gelatin is a biopolymer widely used to synthesize hydrogels for biomedical applications, such as tissue engineering and bioinks for 3D bioprinting. However, as with other biopolymer-based hydrogels, gelatin-hydrogels do not allow precise temporal control of the biomolecule distribution to mimic biological signals involved in biological mechanisms. Leveraging DNA nanotechnology tools to develop a responsive controlled release system via strand displacement has demonstrated the ability to encode logic process, which would enable a more sophisticated design for controlled release. However, this unique and dynamic system has not yet been incorporated within any hydrogels to create a complete release circuit mechanism that closely resembles the sequential distribution of biomolecules observed in the native environment. Here, we designed and synthesized versatile multi-arm DNA motifs that can be easily conjugated within a gelatin hydrogel via click chemistry to incorporate a strand displacement circuit. After validating the incorporation and showing the increased stability of DNA motifs against degradation once embedded in the hydrogel, we demonstrated the ability of our system to release multiple model cargos with temporal specificity by the addition of the trigger strands specific to each cargo. Additionally, we were able to modulate the rate and quantity of cargo release by tuning the sequence of the trigger strands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.