In this study, a new, cost-effective, rapid, and easy method to produce a sunlight-like D65 light source from a typical white light-emitting diode (LED) is discussed. The novelty of this method is that the emission spectrum of a typical white LED is measured first, then the reverse spectrum is used to design and fabricate a double-sided multilayer coating filter to set in front of the typical white LED. This can be verified experimentally to improve the color-rendering index of the white LED to 95.8 at the D65 color temperature. The optical thicknesses of the multilayer film are designed at a quarter wavelength. The layer-thickness errors during the deposition process are reduced due to easy monitoring with the turning-point method. By lowering both the cost and level of technology required to produce D65 light sources, in addition to the most direct consequences of increased D65 availability and affordability, the cost and level of technology required for research that heavily utilizes D65 light sources can also be lowered in turn, especially in the fields of clinical science, medicine, and related industries.
Highly reflective metal coatings are essential for manufacturing reflecting telescope mirrors to achieve the highest reflectivity with broad spectral bandwidth. Among metallic materials, enhanced silver-based coatings can provide higher reflectivity in the 400–500 nm spectral range to better performance from visible to near IR. Moreover, over-coating a dielectric protective layer on the mirror’s front side attains additional hardness and oxidation stability. In this paper, we study a combination of thermal and electron beam evaporation as a technology to form protected enhanced high reflective Ag coatings. A newly designed multiplayer film can pass ASTM 5B adhesive performance testing and give sulfurization inhibition. The average specular reflectivity for the enhancement coating is about 98% in wavelengths across the spectral range from 400–1000 nm. This innovation has been demonstrated on a Newtonian type telescope, with storage in an ambiance humidity H = 60–85%, and temperature T = 10–35 °C, for more than six months without degradation in coating performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.