These preliminary observations suggest that HD patients in the lowest and highest quintiles of UA levels would face higher risk of mortality. Further studies with larger sample sizes will be needed to confirm these findings.
Diabetic myopathy, a less studied complication of diabetes, exhibits the clinical observations characterized by a less muscle mass, muscle weakness and a reduced physical functional capacity. Accumulation of advanced glycation end-products (AGEs), known to play a role in diabetic complications, has been identified in ageing human skeletal muscles. However, the role of AGEs in diabetic myopathy remains unclear. Here, we investigated the effects of AGEs on myogenic differentiation and muscle atrophy in vivo and in vitro. We also evaluated the therapeutic potential of alagebrium chloride (Ala-Cl), an inhibitor of AGEs. Muscle fibre atrophy and immunoreactivity for AGEs, Atrogin-1 (a muscle atrophy marker) and phosphorylated AMP-activated protein kinase (AMPK) expressions were markedly increased in human skeletal muscles from patients with diabetes as compared with control subjects. Moreover, in diabetic mice we found increased blood AGEs, less muscle mass, lower muscular endurance, atrophic muscle size and poor regenerative capacity, and increased levels of muscle AGE and receptor for AGE (RAGE), Atrogin-1 and phosphorylated AMPK, which could be significantly ameliorated by Ala-Cl. Furthermore, in vitro, AGEs (in a dose-dependent manner) reduced myotube diameters (myotube atrophy) and induced Atrogin-1 protein expression in myotubes differentiated from both mouse myoblasts and primary human skeletal muscle-derived progenitor cells. AGEs exerted a negative regulation of myogenesis of mouse and human myoblasts. Ala-Cl significantly inhibited the effects of AGEs on myotube atrophy and myogenesis. We further demonstrated that AGEs induced muscle atrophy/myogenesis impairment via a RAGE-mediated AMPK-down-regulation of the Akt signalling pathway. Our findings support that AGEs play an important role in diabetic myopathy, and that an inhibitor of AGEs may offer a therapeutic strategy for managing the dysfunction of muscle due to diabetes or ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.