Platelets play an essential role in primary hemostasis through bleeding and thromboembolism. Thus, the diagnosis or evaluation of impaired hereditary, acquired, and drug-related platelet dysfunction has become imperative. The assessment of the platelet function is too complex for routine platelet function study. The major methods involved in platelet function study include platelet function analyzer testing, thromboelastography, thromboelastometry, light transmission aggregometry, and flow cytometry. The current review article focuses on the methods with flow cytometry for immunophenotyping of platelet and evaluating platelet function for platelet disorders, especially in patients with thrombocytopenia. According to the consensus published by the International Society on Thrombosis and Haemostasis, for inherited and acquired platelet disorders, the two major measures by which flow cytometry determines platelet function are glycoprotein IIb/IIIa/P-selectin (CD62p) expression and percentage of leukocyte–platelet aggregates. Using flow cytometry to determine platelet function has several advantages, including good sensitivity to low platelet counts, small blood volume required, and the nonnecessity of centrifugation. However, flow cytometry has still many limitations and challenges, with standardization for routine laboratory testing also proving difficult. Although flow cytometry is available for multipurpose and sensitive study of platelet functions at the same time, the challenging analysis gradually increases and needs to be addressed before reality.
Coronavirus disease 2019 (COVID-19) vaccines are associated with serious thromboembolic or thrombocytopenic events including vaccine-induced immune thrombocytopenia and thrombosis and immune thrombocytopenia, particularly AZD1222/ChAdOx1. According to the proposed mechanism, COVID-19 vaccines stimulate inflammation and platelet activation. In this study, we analyzed the role of AZD1222/ChAdOx1 vaccines in the activation of platelets and the release of anti-PF4 antibodies and inflammatory cytokines in a cohort of healthy donors without vaccine-induced immune thrombotic thrombocytopenia (VITT). Forty-eight healthy volunteers were enrolled in this study. Blood samples were collected from peripheral blood at three time points: before vaccination and 1 and 7 days after vaccination. Compared with the prevaccination data, a decrease in the leukocyte and platelet counts was observed 1 day after vaccination, which recovered 7 days after injection. The percentage of activated GPIIb/IIIa complex (PAC-1) under high ADP or thrombin receptor-activating peptide stimulation increased 1 day after vaccination. Furthermore, interluekin-8 (IL-8) and interferon-gamma-induced protein 10 (IP-10) increased significantly. Additionally, platelet activation and inflammation, with the release of cytokines, were observed; however, none of the individuals developed VITT. Mild thrombocytopenia with platelet activation and inflammation with an elevation of IL-8 and IP-10 were observed after AZ vaccination.
Background: Thrombocytosis is a common finding in hospitalized patients and is of two main types, essential thrombocytosis (ET) and reactive thrombocytosis (RT). It is important to distinguish the two due to increased risk of developing marrow fibrosis, acute leukemia, and thrombosis in the former. Molecular studies are the main tools to differentiate the two but are not available in all hospitals. We aimed to design a highly sensitive scoring system using routine lab data to classify thrombocytosis as essential or reactive.Methods: A total of 145 patients were enrolled in this study. Potential predictors included patient demographics and clinical laboratory parameters. Receiver operating characteristic curve analysis was used to decide the optimal cutoff level. Multivariate logistic regression with forward model selection method was performed to decide the predictors.Results: The risk scores by multivariate analysis were as follows: 1 point for WBC > 13,500/μL; 2.5 points for Hb > 10.9 g/dL; 3 points for platelet count > 659,000/μL; and 2 points for MPV > 9.3 fL. The cut off value was set as 4.5 points, and sensitivity of 91.1% and specificity of 75.8% were noted.Conclusion: In this study, we investigated lab data and developed a high-sensitivity convenient-to-use scoring system to differentiate ET from RT. The scoring system was assigned to the resulting model to make it more economical, simple, and convenient for clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.