Prostacyclin (PGI2) has been shown to inhibit proliferation in vascular smooth muscle cells. To clarify the underlying molecular mechanism, we investigated the vasoprotection of beraprost (a PGI2 agonist) both in vivo and in vitro. Beraprost eliminated increases in proliferation of rat aortic smooth muscle cells (RASMCs) by 12-O-tetradecanoylphorbol 13-acetate, and enhanced the peroxisome proliferator-activated receptor-delta (PPARdelta) and inducible nitric oxide synthetase (iNOS) expressions, which were associated with the antiproliferative action of beraprost according to inhibition experiments by [(3)H]thymidine incorporation. Additionally, elimination of iNOS activity by PPARdelta antagonists suggested that iNOS is the downstream target of PPARdelta. Furthermore, beraprost increased both consensus PPARdelta-responsive element (PPRE)-driven luciferase activity and the binding activity of the PPARdelta to the putative PPRE in the iNOS promoter; nevertheless, it was abolished by PPARdelta antagonists. Deletion of PPRE (-1,349/-1,330) in the iNOS promoter region (-1,359/+2) strongly reduced promoter-driven activity, representing a novel mechanism of iNOS induction by beraprost. Consistent with this, PPARdelta and the concomitant iNOS induction by beraprost were also evident in vivo. Beraprost-mediated protection in a murine model of balloon angioplasty was significantly attenuated by 13S-HODE, a PPARdelta antagonist. Taken together, the results suggest that the causal relationship between PPARdelta and iNOS contributes to the vasoprotective action of beraprost in RASMCs.
We previously showed that an increase in the peroxisome proliferator-activated receptor-delta (PPARdelta), together with subsequent induction of inducible nitric oxide synthase (iNOS) by beraprost (BPS), inhibits aortic smooth muscle cell proliferation. Herein, we delineated the mechanisms of the antiproliferative effects of BPS through the induction of p21/p27. BPS concentration dependently induced the p21/p27 promoter- and consensus cAMP-responsive element (CRE)-driven luciferase activities, which were significantly suppressed by blocking PPARdelta activation. Surprisingly, other than altering the CRE-binding protein (CREB), BPS-mediated PPARdelta activation increased nuclear localization of the CREB-binding protein (CBP), a coactivator, which was further confirmed by chromatin immunoprecipitation. Furthermore, novel functional PPAR-responsive elements (PPREs) next to CREs in the rat p21/p27 promoter regions were identified, where PPARdelta interacted with CREB through CBP recruitment. BPS-mediated suppression of restenosis in mice with angioplasty was associated with p21/p27 induction. Herein, we demonstrate for the first time that BPS-mediated PPARdelta activation enhances transcriptional activation of p21/p27 by increasing CBP nuclear translocation, which contributes to the vasoprotective action of BPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.