Measurements of anisotropy of femtosecond fluorescence after direct excitation of the S1(n,pi*) state of azobenzene in hexane and ethylene glycol solutions have been carried out to address the controversy about inversion and rotation in the mechanism of photoisomerization. The observed anisotropies in hexane decay to a nonzero asymptotic level with a relaxation period the same as that for slow decay of the corresponding biexponential transient; this effect is attributed to involvement of the out-of-plane CNNC-torsional motion on approach to a twisted conical intersection along the "rotation channel" that depolarizes the original in-plane transition moment. In contrast, when the rotational channel becomes substantially hindered in ethylene glycol, the anisotropies show no discernible decay feature, but the corresponding transients show prominent decays attributed to involvement of in-plane symmetric motions; the latter approach a planar-sloped conical intersection along a "concerted inversion channel" for efficient internal conversion through vibronic coupling. The proposed mechanism is consistent with theoretical calculations and rationalizes both results on quantum yields and ultrafast observations.
We report carbon-nanotube-based electromechanical resonators with the fundamental mode frequency over 1.3 GHz, operated in air at room temperature. A new combination of drive and detection methods allows for unprecedented measurement of both oscillation amplitude and phase and elucidates the relative mobility of static charges near the nanotube. The resonator serves as an exceptionally sensitive mass detector capable of approximately 10(-18) g resolution.
We present the first submm (865 µm) imaging spectral line survey at one arcsecond resolution conducted with the Submillimeter Array toward Orion-KL. Within the two × two GHz bandpasses (lower and upper sidebands,, we find about 145 spectral lines from 13 species, 6 isotopologues, and 5 vibrational excited states. Most nitrogen-bearing molecules are strong toward the hot core, whereas the oxygen-bearing molecules peak toward the south-west in the so-called compact ridge. Imaging of spectral lines is shown to be an additional tool to improve the identifications of molecular lines. Arcsecond spatial resolution allows us to distinguish the molecular line emission of the sources I and n from that of the hot core. The only molecular species detected strongly toward source I is SiO, delineating mainly the collimated north-east south-west low-velocity outflow. The two positions close to source I, which have previously been reported to show maser emission in the v=0 28 SiO(1-0) and (2-1) lines, show no detectable maser emission in the v=0 28 SiO(8-7) line at our spatial resolution. SiO is weak toward source n, and thus source n may not currently be driving a molecular outflow. CH 3 OH is the molecule with the highest number of identified lines (46) in this spectral window. This "line forest" allows us to estimate temperatures in the region, and we find temperatures between 50 and 350 K, with the peak temperatures occurring toward the hot core. The detection of strong vibrational excited line emission from the submm continuum peak SMA1 supports the interpretation that the source SMA1 is likely of protostellar nature.
With a reprecipitation method, we prepared fluorescent organic nanoparticles of 1,4-di[(E)-2-phenyl-1-propenyl]benzene (PPB) that feature weak emission in solution but exhibit blue-shifted absorption and strong emission as aggregates. Picosecond fluorescent transients of these PPB nanoparticles showed biexponential decay, described with a consecutive kinetic model involving two emissive states. X-ray diffraction patterns of PPB nanocrystals indicate long-range packing structures of two types, one the same as in a single crystal and the other not yet determined. PPB molecules in a crystal show an arrangement of a herringbone type with three benzene rings in a PPB unit being nearly planar and two methyl groups of the unit pointing along the same direction, in contrast to the twisted structure of an isolated PPB molecule. Fluorescence transients of PPB on a femtosecond scale indicate an efficient channel for isomerization that is activated for free PPB in solution but inhibited in PPB forming nanoparticles, demonstrating the significance of molecular geometry and twisting motions that affect the relaxation dynamics in the excited state. The versatile techniques combined in this work provide strong evidence to improve our understanding of optical properties in organic nanoparticles dependent on size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.