The physiological impact of agricultural pollution, habitat disturbance, and food source variability on amphibian remains poorly understood. By comparing the composition and predicted functions of gut microbiota of two frog species from forest and farmland, we quantified the effects of the exogenous environment and endogenous filters on gut microbiota and the corresponding functions. However, compositional differences of the gut microbiota between the frog species were not detected, even when removing roughly 80–88% of the confounding effect produced by common and shared bacteria (i.e., generalists) and those taxa deemed too rare. The habitat effect accounted for 14.1% of the compositional difference of gut microbial specialists, but host and host × habitat effects were not significant. Similar trends of a significant habitat effect, at an even higher level (26.0%), for the physiological and metabolic functions of gut microbiota was predicted. A very obvious skewing of the relative abundance of functional groups toward farmland habitats reflects the highly diverse bacterial functions of farmland frogs, in particular related to pathogenic disease and pesticide degradation, which may be indication of poor adaptation or strong selective pressure against disease. These patterns reflect the impacts of agricultural activities on frogs and how such stresses may be applied in an unequal manner for different frog species.
Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis, which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of “early divergence with secondary contact” and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level.
Divergent selection plays a critical role not only as a speciation driver but also in maintaining post-speciation divergence. In the absence of direct evidence, ancestral interspecific gene flow between incipient species can reflect ancient selective pressure for ecological speciation. In the present study, two late-Pleistocene diverged species endemic to Taiwan, Scutellaria playfairii and S. tashiroi, were spatially and ecologically partitioned with partial overlap. Multilocus genome-scan analyses and in silico evaluation revealed ancestral interspecific gene flow but distinct genetic compositions, implying that adaptive divergence contributed to their speciation. Ecological niche modeling and principal component analysis suggested incomplete divergent niches between the two species; the species distribution is therefore consistent with Hutchinson’s metaphor of multidimensional hypervolume niches rather than attributable to a single factor. Constraint ordination analysis supported this inference of a combination of variables explaining the genetic structure. The rare occurrence of hybrids in the sympatric population suggested hybrid breakdown, providing further evidence of divergent selection blocking gene flow. The correlation of environmental variables with integrated genetic components demonstrated that environmental heterogeneity maintains the species and population differentiation. This study highlights the importance of environmental heterogeneity and divergent selection for the rapid speciation and recent diversification of island plants.
Assay for transposase-accessible chromatin using sequencing data (ATAC-seq) is an efficient and precise method for revealing chromatin accessibility across the genome. Most of the current ATAC-seq tools follow chromatin immunoprecipitation sequencing (ChIP-seq) strategies that do not consider ATAC-seq-specific properties. To incorporate specific ATAC-seq quality control and the underlying biology of chromatin accessibility, we developed a bioinformatics software named ATACgraph for analyzing and visualizing ATAC-seq data. ATACgraph profiles accessible chromatin regions and provides ATAC-seq-specific information including definitions of nucleosome-free regions (NFRs) and nucleosome-occupied regions. ATACgraph also allows identification of differentially accessible regions between two ATAC-seq datasets. ATACgraph incorporates the docker image with the Galaxy platform to provide an intuitive user experience via the graphical interface. Without tedious installation processes on a local machine or cloud, users can analyze data through activated websites using pre-designed workflows or customized pipelines composed of ATACgraph modules. Overall, ATACgraph is an effective tool designed for ATAC-seq for biologists with minimal bioinformatics knowledge to analyze chromatin accessibility. ATACgraph can be run on any ATAC-seq data with no limit to specific genomes. As validation, we demonstrated ATACgraph on human genome to showcase its functions for ATAC-seq interpretation. This software is publicly accessible and can be downloaded at https://github.com/RitataLU/ATACgraph.
The level of dentition asymmetry in snail‐eating snakes may reflect their prey choice and feeding efficiency on asymmetric land snails. The three species of Pareas snakes (Squamata: Pareidae) in Taiwan, which form partially sympatric distribution on the island, provide a potential case to test the hypothesis of niche partitioning and character displacement with regard to dentition asymmetry and specialisation in feeding behaviour. In this study, behavioural experiments confirmed that P. formosensis feeds exclusively on slugs, whereas P. atayal and P. komaii consumed both. However, P. atayal more efficiently preys on land snails than P. komaii, exhibiting a shorter handling time and fewer mandibular retractions. Micro‐CT and ancestral character reconstruction demonstrated the lowest asymmetry in P. formosensis (the slug specialist), the highest dentition asymmetry in P. atayal (the land snail specialist) and flexibility in P. komaii (the niche switcher): increased dentition asymmetry when sympatrically distributed with the slug eater (character displacement), and decreased asymmetry when living alone (ecological niche release). Ecological niche modelling showed that the distribution of P. formosensis is associated with the presence of slugs, while that of P. atayal could be explained by the land snails. Combining the results from morphology, phylogeny, behavioural experiments and ecological niche modelling, we showed that competition in the sympatric region might have facilitated character displacement among congeners, while the absence of competition in allopatric region has led to ecological niche release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.