The thermal decomposition of C(2)H(5)OH highly diluted in Ar (1 and 3 ppm) has been studied by monitoring H atoms using the atomic resonance absorption spectrometry (ARAS) technique behind reflected shock waves over the temperature range 1450-1760 K at fixed pressure: 1, 1.45, and 2 atm. The rate constant and the product branching fractions have been determined by analyzing temporal profiles of H atoms; the effect of the secondary reactions on the results has been examined by using a detailed reaction mechanism composed of 103 elementary reactions. The apparent rate constant of ethanol decomposition can be expressed as k(1)/s(-1) = (5.28 ± 0.14) × 10(10) exp[-(23,530 ± 980)/T] (T = 1450-1670 K, P = 1-2 atm) without a detectable pressure dependence within the tested pressure range of this study. Branching fractions for producing CH(3) + CH(2)OH (1a) and H(2)O + C(2)H(4) (1b) have been examined by a quantitative measurement of H atoms produced in the successive decompositions of the products CH(2)OH (1a): the pressure dependence of the branching fraction for channel 1a is obtained by a linear least-squares analysis of the experimental data and can be expressed as φ(1a) = (0.71 ± 0.07) - (826 ± 116)/T, (0.92 ± 0.04) - (1108 ± 70)/T, and (1.02 ± 0.10) - (1229 ± 168)/T for T = 1450-1760 K, at P = 0.99, 1.45, and 2.0 atm, respectively. The rate constant obtained in this study is found to be consistent with previous theoretical and experimental results; however, the pressure dependence of the branching fraction obtained in this study is smaller than those of previous theoretical works. Modification of the parameters for the decomposition rate in the falloff region is suggested to be important to improve the practical modeling of the pyrolysis and combustion of ethanol.
Rate coefficients of the reaction O(3P)+C2H5OH in the temperature range 782-1410 K were determined using a diaphragmless shock tube. O atoms were generated by photolysis of SO2 at 193 nm with an ArF excimer laser; their concentrations were monitored via atomic resonance absorption. Our data in the range 886-1410 K are new. Combined with previous measurements at low temperature, rate coefficients determined for the temperature range 297-1410 K are represented by the following equation: k(T)=(2.89+/-0.09)x10(-16)T1.62 exp[-(1210+/-90)/T] cm3 molecule(-1) s(-1); listed errors represent one standard deviation in fitting. Theoretical calculations at the CCSD(T)/6-311+G(3df, 2p)//B3LYP/6-311+G(3df) level predict potential energies of various reaction paths. Rate coefficients are predicted with the canonical variational transition state (CVT) theory with the small curvature tunneling correction (SCT) method. Reaction paths associated with trans and gauche conformations are both identified. Predicted total rate coefficients, 1.60 x 10(-22)T3.50 exp(16/T) cm3 molecule(-1) s(-1) for the range 300-3000 K, agree satisfactorily with experimental observations. The branching ratios of three accessible reaction channels forming CH3CHOH+OH (1a), CH2CH2OH+OH (1b), and CH3CH2O+OH (1c) are predicted to vary distinctively with temperature. Below 500 K, reaction 1a is the predominant path; the branching ratios of reactions 1b,c become approximately 40% and approximately 11%, respectively, at 2000 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.