Understanding of the contact conductivity of carbon nanotubes (CNTs) will contribute to the further application of CNTs for electronic devices, such as thin film transistors whose channel or electrode is made of dispersed CNTs. In this study, we estimated the contact conductivity of a CNT/CNT interface from the in-plane conductivity of an uncapped CNT forest on SiC. Investigation of the electrical properties of dense CNT forests is also important to enable their electrical application. The in-plane conductivity of a dense CNT forest on silicon carbide normalized by its thickness was measured to be 50 S/cm, which is two to three orders of magnitude lower than the conductivity of a CNT yarn. It was also found that both the CNT cap region and the CNT bulk region exhibit in-plane conductivity. The contact conductivity of CNTs was estimated from the in-plane conductivity in the bulk region. Dense and uncapped CNT forest can be approximated by a conductive mesh, in which each conductive branch corresponds to the CNT/CNT contact conductance. The evaluated contact conductivity was in good agreement with that calculated from the tunneling effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.