Osteointegration of titanium implants in bone defects is clinically important for long-term performance of orthopaedic implants. In this work, we developed a facile and effective "one-pot" deposition method based on dopamine polymerization for the development of cell-adhesive, osteoconductive, and osteoinductive titanium implants. Arg-Gly-Asp (RGD)-conjugated polymers, hydroxyapatite (HAp) nanoparticles, and bone morphogenic protein-2 (BMP-2) were mixed with an alkaline dopamine solution, and then, titanium substrates were immersed in the mixture for an hour. During poly(dopamine) coating, the three types of bioactive substances were immobilized on the titanium surfaces. Our results indicate that RGD conjugation enhanced the adhesion of human bone marrow stem cell line, while HAp incorporation facilitated cellular osteodifferentiation. The immobilization of BMP-2 induced the osteogenesis of the stem cells, indicated by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. The mineralization on the deposited substrates was also enhanced greatly. This functionalized layer on titanium substrate promoted mesenchymal stem cell to osteoblast and improved osteogenic differentiation and mineralization. In conclusion, the surface modification method shows a great potential for enhancement of osteointegration of orthopaedic and dental implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.