Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. Foxp3+ regulatory T (Treg) cells are reduced in frequency and dysfunctional in patients with MS, but the underlying mechanisms of this deficiency are unclear. Here, we show that induction of human IFN-γ−IL-17A−Foxp3+CD4+ T cells is inhibited in the presence of circulating exosomes from patients with MS. The exosomal miRNA profile of patients with MS differs from that of healthy controls, and let-7i, which is markedly increased in patients with MS, suppresses induction of Treg cells by targeting insulin like growth factor 1 receptor (IGF1R) and transforming growth factor beta receptor 1 (TGFBR1). Consistently, the expression of IGF1R and TGFBR1 on circulating naive CD4+ T cells is reduced in patients with MS. Thus, our study shows that exosomal let-7i regulates MS pathogenesis by blocking the IGF1R/TGFBR1 pathway.
Ghrelin is a recently identified gastric hormone that displays strong growth hormone-releasing activity mediated by the growth hormone secretagogue receptor. While this unique endogenous peptide participates in the regulation of energy homeostasis, increases food intake, and decreases energy expenditure, its ability to inhibit the production of proinflammatory cytokines in vitro indicates its role in the regulation of inflammatory process in vivo. Here we examine the effect of exogenous ghrelin on the development of experimental autoimmune encephalomyelitis (EAE), a representative model of multiple sclerosis. In the C57BL/6 mouse model of EAE induced by sensitization to myelin oligodendrocyte glycoprotein 35–55 peptide, we found that alternate-day s.c. injections of ghrelin (5 μg/kg/day) from day 1 to 35 significantly reduced the clinical severity of EAE. The suppression of EAE was accompanied by reduced mRNA levels of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 in the spinal cord cellular infiltrates and microglia from ghrelin-treated mice at the peak of disease, suggesting the role of ghrelin as an antiinflammatory hormone. Consistently, ghrelin significantly suppressed the production of proinflammatory cytokines in LPS-stimulated microglia in vitro. These results shed light on the new role of ghrelin in the regulation of inflammation with possible implications for management of human diseases.
The altered glycolipid ligand OCH is a selective inducer of T(h)2 cytokines from NKT cells and a potent therapeutic reagent for T(h)1-mediated autoimmune diseases. Although we have previously shown the intrinsic molecular mechanism of preferential IL-4 production by OCH-stimulated NKT cells, little is known about the extrinsic regulatory network for IFN-gamma production. Here we demonstrate that OCH induces lower production of IFN-gamma, not only by NKT cells but also by NK cells compared with alpha-galactosylceramide. OCH induced lower IL-12 production due to ineffective primary IFN-gamma and CD40 ligand expression by NKT cells, and resulted in lower secondary IFN-gamma induction. Co-injection of a sub-optimal dose of IFN-gamma and stimulatory anti-CD40 mAb compensates for the lower induction of IL-12 by OCH administration. IL-12 converts OCH-induced cytokine expression from IL-4 predominance to IFN-gamma predominance. Furthermore, CpG oligodeoxynucleotide augmented IL-12 production when co-administrated with OCH, resulting in increased IFN-gamma production. Taken together, the lower IL-12 production and subsequent lack of secondary IFN-gamma burst support the effective T(h)2 polarization of T cells by OCH. In addition, highlighted in this study is the characteristic property of OCH that can induce the differential production of IFN-gamma or IL-4 according to the availability of IL-12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.