BackgroundGenetic tests for hereditary hearing loss inform clinical management of patients and can provide the first step in the development of therapeutics. However, comprehensive genetic tests for deafness genes by Sanger sequencing is extremely expensive and time-consuming. Next-generation sequencing (NGS) technology is advantageous for genetic diagnosis of heterogeneous diseases that involve numerous causative genes.MethodsGenomic DNA samples from 58 subjects with hearing loss from 15 unrelated Japanese families were subjected to NGS to identify the genetic causes of hearing loss. Subjects did not have pathogenic GJB2 mutations (the gene most often associated with inherited hearing loss), mitochondrial m.1555A>G or 3243A>G mutations, enlarged vestibular aqueduct, or auditory neuropathy. Clinical features of subjects were obtained from medical records. Genomic DNA was subjected to a custom-designed SureSelect Target Enrichment System to capture coding exons and proximal flanking intronic sequences of 84 genes responsible for nonsyndromic or syndromic hearing loss, and DNA was sequenced by Illumina GAIIx (paired-end read). The sequences were mapped and quality-checked using the programs BWA, Novoalign, Picard, and GATK, and analyzed by Avadis NGS.ResultsCandidate genes were identified in 7 of the 15 families. These genes were ACTG1, DFNA5, POU4F3, SLC26A5, SIX1, MYO7A, CDH23, PCDH15, and USH2A, suggesting that a variety of genes underlie early-childhood hearing loss in Japanese patients. Mutations in Usher syndrome-related genes were detected in three families, including one double heterozygous mutation of CDH23 and PCDH15.ConclusionTargeted NGS analysis revealed a diverse spectrum of rare deafness genes in Japanese subjects and underscores implications for efficient genetic testing.
The authors investigated whether high-dose methotrexate-induced toxicity differed according to the presence of methylenetetrahydrofolate reductase (MTHFR) or reduced folate carrier 1 (RFC1) genetic polymorphism. The authors studied 15 children with acute lymphoblastic leukemia or lymphoblastic lymphoma who were treated using protocols that included high-dose methotrexate (3.0 g/m), for an overall total of 43 courses. Methotrexate-induced toxicities and the plasma methotrexate concentrations were evaluated retrospectively. Hematologic toxicity was the most frequently observed toxicity, appearing in 87% of the patients. In a subset of patients (47%), elevation of liver transaminase levels showed a repeated tendency to develop. High plasma methotrexate concentrations at 48 hours after the methotrexate infusion were not significantly related to methotrexate-induced toxicities except for mucositis. A generalized estimating equation analysis revealed that vomiting during the high-dose methotrexate treatment was more pronounced in patients who had a larger number of G alleles at the RFC1 80G>A polymorphism. No significant differences in the development of other toxicities or in the plasma methotrexate concentrations were observed for the different MTHFR 677C>T or RFC1 80G>A polymorphisms. This study suggests but does not prove that the RFC1 80G>A polymorphism may contribute to interindividual variability in responses to high-dose methotrexate.
We investigated preliminarily whether methylenetetrahydrofolate reductase (MTHFR) 677C/T or reduced folate carrier 1 (RFC1) 80G/A polymorphisms were associated with toxicities during maintenance chemotherapy with mercaptopurine (6MP) and methotrexate (MTX) in children with acute lymphoblastic leukemia or lymphoblastic lymphoma. The clinical records of 20 children (2 to 15-y old) who had received maintenance chemotherapy were reviewed retrospectively and their genomic DNA was genotyped to identify polymorphisms at MTHFR 677C/T, RFC1 80G/A, and thiopurine methyltransferase 719A/G. Maintenance chemotherapy with 6MP and MTX was repeated on a weekly basis, and any week during which 6MP and/or MTX dosing was withheld was counted as an interrupted episode. Associations between the risk of interruptions and polymorphisms were studied using a generalized estimating equation analysis. Patients with an increasing number of T alleles at MTHFR 677C/T experienced interruptions in both 6MP (P<0.01) and MTX (P=0.03) more frequently. Patients with an increasing number of A alleles at RFC1 80G/A experienced interruptions in 6MP (P=0.04) more frequently. This preliminary study does not prove but suggests that MTHFR 677C/T and RFC1 80G/A polymorphisms may serve as predictors of toxicity during maintenance chemotherapy.
Recently, three marfanoid patients with congenital lipodystrophy and a neonatal progeroid appearance were reported. Although their phenotype was distinct from that of classic Marfan syndrome, they all had a truncating mutation in the penultimate exon, i.e., exon 64, of FBN1, the causative gene for Marfan syndrome. These patients might represent a new entity, but the exact phenotypic and genotypic spectrum remains unknown. Here, we report on a girl born prematurely who exhibited severe congenital lipodystrophy and a neonatal progeroid appearance. The patient exhibited a characteristic growth pattern consisting of an accelerated growth in height with a discrepant poor weight gain. She had a characteristic facial appearance with craniosynostosis. A mutation analysis identified c.8175_8182del8bp, p.Arg2726Glufs*9 in exon 64 of the FBN1 gene. A review of similar, recently reported patients revealed that the cardinal features of these patients include (1) congenital lipodystrophy, (2) premature birth with an accelerated linear growth disproportionate to the weight gain, and (3) a progeroid appearance with distinct facial features. Lines of molecular evidence suggested that this new progeroid syndrome represents a neomorphic phenotype caused by truncated transcripts with an extremely charged protein motif that escapes from nonsense-mediated mRNA decay, altering FBN1-TGF beta signaling, rather than representing the severe end of the hypomorphic phenotype of the FBN1-TGF beta disorder spectrum. We propose that this marfanoid entity comprised of congenital lipodystrophy, a neonatal progeroid appearance, and a peculiar growth profile and caused by rare mutations in the penultimate exon of FBN1, be newly referred to as marfanoid-progeroid syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.