In the present study, we examined the toxicity of benzyl ITC (BITC) and its urinary mercapturic acid metabolite (BITC-NAC), using a normal renal proximal tubular cell line, pig LLC-PK1. BITC increased cell death with an IC(50) value of about 7 μM, whereas the cytotoxic effect of BITC-NAC was five times weaker than that of BITC. We observed a significant necrosis of the compounds on LLC-PK1 cells with oxidative stress. In the presence of 5 mM glutathione (GSH), comparable to physiological levels, the cytotoxicity of BITC-NAC as well as BITC was significantly reduced. Furthermore, the increase in intracellular GSH levels by pretreatment with NAC before the BITC treatment resulted in inhibition of the BITC-induced necrotic events as well as intracellular oxidative stress. These results suggest that GSH is a determinant of cellular resistance against the BITC-mediated and oxidative stress-dependent cytotoxicity in renal proximal tubular cells.
Transthyretin (TTR) is an amyloidogenic protein associated with hereditary and nonhereditary transthyretin amyloidoses (ATTR). Dissociation of the tetramer of TTR to the monomer induces TTR misfolding, which leads to amyloid fibril formation and triggers the onset of ATTR amyloidosis. Stabilizers of tetrameric TTR have been accepted as an effective ATTR amyloidosis treatment while effect is limited and they are too expensive. The aim of our study was to find more effective and cheep natural compound to suppress TTR amyloid formation. Glabridin, a prenylated isoflavan isolated from Glycyrrhiza glabra L., stabilized the TTR tetramer in vitro. The effects of licorice-derived flavonoid oil-Glavonoid, a natural substance that includes glabridin and several polyphenols-on stabilizing the TTR tetramer must still be elucidated. To examine plasma TTR stabilization by Glavonoid in vitro, we investigated the feasibility of utilizing glabridin plus Glavonoid to prevent TTR amyloid fibril formation. Glavonoid mixed with human plasma samples at 24 h incubation in vitro increased the tetramer level (P < 0.05) and reduced the monomer level (P < 0.01) and the monomer/tetramer ratio (P < 0.05) of TTR compared to those without Glavonoid by immunoblot analysis, such effect could not observe in the presence of glabridin. Oral Glavonoid (300 mg for 12 weeks) in 7 healthy volunteers effectively increased the plasma glabridin concentration. Glavonoid increased the TTR tetramer level and reduced the monomer/tetramer ratio of TTR (P < 0.05) in plasma at 12 weeks in healthy volunteers compared to those of age matched control subjects without the supplement. Thus, oral Glavonoid may effectively prevent TTR amyloid fibril formation via TTR tetramer stabilization. Glavonoid may become a promising supplement before onset of ATTR amyloidosis.
Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 μM significantly decreased the viability of the osteoclast‐like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate‐resistant acid phosphatase activity and nuclear factor of activated T‐cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti‐osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase‐3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC‐lysine thiourea in the cells was also increased in a time‐dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase‐3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.