The chaperonin GroEL assists protein folding in the presence of ATP and magnesium through substrate protein capsulation in combination with the cofactor GroES. Recent studies have revealed the details of folding cycles of GroEL from Escherichia coli, yet little is known about the GroEL-assisted protein folding mechanisms in other bacterial species. Using three model enzyme assays, we have found that GroEL1 from Chlamydophila pneumoniae, an obligate human pathogen, has a broader selectivity for nucleotides in the refolding reaction. To elucidate structural factors involved in such nucleotide selectivity, GroEL chimeras were constructed by exchanging apical, intermediate, and equatorial domains between E. coli GroEL and C. pneumoniae GroEL1. In vitro folding assays using chimeras revealed that the intermediate domain is the major contributor to the nucleotide selectivity of C. pneumoniae GroEL1. Additional site-directed mutation experiments led to the identification of Gln 400 and Ile 404 in the intermediate domain of C. pneumoniae GroEL1 as residues that play a key role in defining the nucleotide selectivity of the protein refolding reaction.
Chaperonin GroEL assists protein folding in the presence of ATP and magnesium. Recent studies have shown that several divalent cations other than magnesium induce conformational changes of GroEL, thereby influencing chaperonin-assisted protein folding, but little is known about the detailed mechanism for such actions. Thus, the effects of divalent cations on protein encapsulation by GroEL/ES complexes were investigated. Of the divalent cations, not only magnesium, but also manganese ions enabled the functional refolding and release of 5,10-methylenetetrahydroforate reductase (METF) by GroEL. Neither ATP hydrolysis nor METF refolding was observed in the presence of zinc ion, whereas only ATP hydrolysis was induced by cobalt and nickel ions. SDS-PAGE and gel filtration analyses revealed that cobalt, nickel and zinc ions permit the formation of stable substrate-GroEL-GroES cis-ternary complexes, but prevent the release of METF from GroEL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.