Background We aimed to develop an early warning system for real-time sepsis prediction in the ICU by machine learning methods, with tools for interpretative analysis of the predictions. In particular, we focus on the deployment of the system in a target medical center with small historical samples. Methods Light Gradient Boosting Machine (LightGBM) and multilayer perceptron (MLP) were trained on Medical Information Mart for Intensive Care (MIMIC-III) dataset and then finetuned on the private Historical Database of local Ruijin Hospital (HDRJH) using transfer learning technique. The Shapley Additive Explanations (SHAP) analysis was employed to characterize the feature importance in the prediction inference. Ultimately, the performance of the sepsis prediction system was further evaluated in the real-world study in the ICU of the target Ruijin Hospital. Results The datasets comprised 6891 patients from MIMIC-III, 453 from HDRJH, and 67 from Ruijin real-world data. The area under the receiver operating characteristic curves (AUCs) for LightGBM and MLP models derived from MIMIC-III were 0.98 − 0.98 and 0.95 − 0.96 respectively on MIMIC-III dataset, and, in comparison, 0.82 − 0.86 and 0.84 − 0.87 respectively on HDRJH, from 1 to 5 h preceding. After transfer learning and ensemble learning, the AUCs of the final ensemble model were enhanced to 0.94 − 0.94 on HDRJH and to 0.86 − 0.9 in the real-world study in the ICU of the target Ruijin Hospital. In addition, the SHAP analysis illustrated the importance of age, antibiotics, net balance, and ventilation for sepsis prediction, making the model interpretable. Conclusions Our machine learning model allows accurate real-time prediction of sepsis within 5-h preceding. Transfer learning can effectively improve the feasibility to deploy the prediction model in the target cohort, and ameliorate the model performance for external validation. SHAP analysis indicates that the role of antibiotic usage and fluid management needs further investigation. We argue that our system and methodology have the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention. Trial registration: NCT05088850 (retrospectively registered).
Background: The lack of information interoperability between different devices and systems in the ICU hinders further utilization of data, especially for early warning of specific diseases in the ICU. Objectives: We aimed to establish a real-time early warning system for sepsis based on a data integration system that can be implemented at the bedside of the intensive care unit (ICU), named SEPRES. Methods: Data is collected from bedside devices through the integration hub and uploaded to the integration system through the local area network. The data integration system was designed to integrate vital signs data, laboratory data, ventilator data, demographic data, pharmacy data, nursing data, etc. from multiple medical devices and systems. It integrates, standardizes, and stores information, making the real-time inference of the early warning module possible. The built-in sepsis early warning module can detect the onset of sepsis within 5 hours preceding at most. Results: Our data integration system has already been deployed in Ruijin Hospital, confirming the effectiveness of our system. Conclusions: We highlight that SEPRES has the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention.
Background: The lack of information interoperability between different devices and systems in the intensive care unit (ICU) hinders further utilization of data, especially for early warning of specific diseases in the ICU. Objectives: We aimed to establish a data integration system. Based on this system, the sepsis prediction module was added to compose the Sepsis PREdiction System (SERPRES), where real-time early warning of sepsis can be implemented at the bedside in the ICU. Methods: Data is collected from bedside devices through the integration hub and uploaded to the integration system through the local area network. The data integration system was designed to integrate vital signs data, laboratory data, ventilator data, demographic data, pharmacy data, nursing data, etc. from multiple medical devices and systems. It integrates, standardizes, and stores information, making the real-time inference of the early warning module possible. The built-in sepsis early warning module can detect the onset of sepsis within 5 hours preceding at most. Results: Our data integration system has already been deployed in Ruijin Hospital, confirming the feasibility of our system. Conclusions: We highlight that SEPRES has the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.