Magainin 2 (Mag 2), which is isolated from the skin of frogs, is a representative antimicrobial peptide (AMP), exerts its antimicrobial activity via microbial membrane disruption. It has been reported that both the amphipathicity and helical structure of Mag 2 play an important role in its antimicrobial activity. In this study, we revealed that the sequence of 17 amino acid residues in Mag 2 (peptide 7) is required to exert sufficient activity. We also designed a set of Mag 2 derivatives, based on enhancement of helicity and/or amphipathicity, by incorporation of α,α‐disubstituted amino acid residues into the Mag 2 fragment, and evaluated their preferred secondary structures and their antimicrobial activities against both Gram‐positive and Gram‐negative bacteria. As a result, peptide 11 formed a stable helical structure in solution, and possessed potent antimicrobial activities against both Gram‐positive and Gram‐negative bacteria without significant cytotoxicity.
Magainin 2 (Mag2), which was isolated from the skin of the African clawed frog, is a representative antimicrobial peptide (AMP) that exerts antimicrobial activity via microbial membrane disruption. It has been reported that the helicity and amphipathicity of Mag2 play important roles in its antimicrobial activity. We investigated and recently reported that 17 amino acid residues of Mag2 are required for its antimicrobial activity, and accordingly developed antimicrobial foldamers containing α,α-disubstituted amino acid residues. In this study, we further designed and synthesized a set of Mag2 derivatives bearing the hydrocarbon stapling side chain for helix stabilization. The preferred secondary structures, antimicrobial activities, and cell-membrane disruption activities of the synthesized peptides were evaluated. Our analyses revealed that hydrocarbon stapling strongly stabilized the helical structure of the peptides and enhanced their antimicrobial activity. Moreover, peptide 2 stapling between the first and fifth position from the N-terminus showed higher antimicrobial activity than that of Mag2 against both gram-positive and gram-negative bacteria without exerting significant hemolytic activity. To investigate the modes of action of tested peptides 2 and 8 in antimicrobial and hemolytic activity, electrophysiological measurements were performed.
Antimicrobial peptides (AMPs) are expected to be good candidate molecules for novel antimicrobial therapies. Most AMPs exert their antimicrobial activity through disruption of microbial membranes due to their amphipathic properties. Recently, the helical peptide ‘Stripe’ was reported by our group, a rationally designed amphipathic AMP focused on distribution of natural cationic and hydrophobic amino acid residues. In this study, a set of Stripe‐based AMP foldamers was designed, synthesized and investigated that contain α,α‐disubstituted amino acids or side‐chain stapling to stabilize their helical structures. Our results showed that a peptide containing 2‐aminoisobutyric acid (Aib) residues exhibited potent antimicrobial activity against both Gram‐positive S.aureus (MIC value: 3.125 μM) and Gram‐negative bacteria (including a multidrug‐resistant strain, MDRP, MIC value: 1.56 μM), without significant hemolytic activity (>100 μM). Electrophysiological measurements revealed that this peptide formed stable pores in a 1,2‐dioleoyl‐sn‐glycero‐3‐phosphoethanolamine (DOPE)/1,2‐dioleoyl‐sn‐glycero‐3‐phosphoglycerol (DOPG) bilayer but not in a dioleoylphosphocholine (DOPC) bilayer. The introduction of Aib residues into Stripe could be a promising way to increase the antimicrobial activity of AMP foldamers, and the peptide could represent a promising novel therapeutic candidate to treat multidrug‐resistant bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.