We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats.
It has long been discussed whether endogenous retroviruses (ERVs) are involved in the pathogenesis of autoimmune diseases. Among various human endogenous retroviruses (HERVs), we have focused on HERV-R. To investigate the biological roles of HERV-R, we earlier established transgenic rats carrying the full sequence of the viral genome. In these HERV-R rats, however, no disease occurred. Another trigger that induces autoimmunity may be essential for the recognition of HERV-R products by the immune system. Thus, in this study, we mated HERV-R rats with env-pX rats (transgenic rats carrying the env-pX gene of human T cell leukemia virus type I) that develop autoimmune diseases, and generated double transgenic (DTG) rats. In DTG rats, autoimmune diseases occurred similarly in env-pX rats. Interestingly, deposition of rat IgM but not IgG was observed on the glomerular endothelial cells. Such IgM deposition was never seen in the parental HERV-R or env-pX rats. We considered that in situ formation of immune complexes consisted of the HERV-R env glycoprotein and anti-HERV-R env IgM antibodies (Abs) in DTG rats, according to the following evidence: (1) No dense deposit, representing deposition of circulating immune complexes, was seen on glomerular endothelial cells. (2) IgM Abs reactive with HERV-R env glycoprotein were generated in the serum. (3) HERV-R env glycoprotein was expressed in the kidney, specifically on glomerular endothelial cells. (4) IgM deposition was partly colocalized with the HERV-R env glycoprotein on the glomeruli. These findings strongly suggest that the HERV-R env glycoprotein is recognized as an autoantigen in the host with autoimmune diseases.
Overproduction of interleukin (IL)-6 from synovial cells is critically involved in the pathogenesis of rheumatoid arthritis (RA). Cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), a leucine zipper transcription factor, is expressed at a high level in synovial cells of patients with RA. Although CREB transactivates IL-6 expression in vascular smooth muscle cells, the relation between CREB expression and IL-6 production from arthritic synovial cells remains unclear. In this study, to determine whether CREB is implicated in IL-6 production from arthritic synovial cells, a dominant negative molecule of activation transcription factor 1 (ATF-1) was transfected into synovial cells obtained from arthritic joints of env-pX rats. These transgenic rats carrying the env-pX gene of human T-cell leukemia virus type-1 develop destructive arthritis with high titers of serum rheumatoid factor and are thus regarded as a suitable model of RA. The dominant negative ATF-1 (ATF-1DN) constitutes a heterodimer with CREB and inhibits CREB function, as CREB/ATF-1DN heterodimers no longer bind to the target sequence of CREB. We showed that transfection of ATF-1DN significantly reduced IL-6 production from arthritic synovial cells. These findings suggest that CREB is implicated in IL-6 production from synovial cells and plays an important role in RA pathogenesis.
Overproduction of interleukin (IL)-6 from synovial cells is critically involved in the pathogenesis of rheumatoid arthritis (RA). Cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), a leucine zipper transcription factor, is expressed at a high level in synovial cells of patients with RA. Although CREB transactivates IL-6 expression in vascular smooth muscle cells, the relation between CREB expression and IL-6 production from arthritic synovial cells remains unclear. In this study, to determine whether CREB is implicated in IL-6 production from arthritic synovial cells, a dominant negative molecule of activation transcription factor 1 (ATF-1) was transfected into synovial cells obtained from arthritic joints of env-pX rats. These transgenic rats carrying the env-pX gene of human T-cell leukemia virus type-1 develop destructive arthritis with high titers of serum rheumatoid factor and are thus regarded as a suitable model of RA. The dominant negative ATF-1 (ATF-1DN) constitutes a heterodimer with CREB and inhibits CREB function, as CREB/ATF-1DN heterodimers no longer bind to the target sequence of CREB. We showed that transfection of ATF-1DN significantly reduced IL-6 production from arthritic synovial cells. These findings suggest that CREB is implicated in IL-6 production from synovial cells and plays an important role in RA pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.