Continuous exposure to daunorubicin (DNR) confers resistance against the drug-elicited lethality of leukemic cells and then reduces the remission rate. However, the detailed mechanisms involved in resistance development of leukemic cells to DNR remain unclear. Upregulation of aldo-keto reductases (AKRs) in human leukemic U937 cells was evaluated by gene-specific PCR and western blot analyses, and the contribution of AKRs toward the DNR sensitivity was assessed using gene expression and RNA-interference techniques and specific inhibitors. In addition, DNR reduction and cell differentiation were analyzed by fluorescence high-performance liquid chromatography and flow cytometry, respectively. Treatment with high doses of DNR triggered apoptotic induction of U937 cells through the production of reactive oxygen species (ROS) and a ROS-dependent mechanism. In contrast, DNR, at its sublethal doses, induced the expression of AKR1C1 and AKR1C3, both of which reduced the DNR sensitivity of the cells. The enzymes did not interfere with the cell differentiation caused by DNR, whereas their upregulation facilitated reduction of the anticancer drug and a ROS-derived lipid aldehyde 4-hydroxy-2-nonenal. These results suggest crucial roles of AKR1C1 and AKR1C3 in the acquisition of DNR resistance of leukemic cells by metabolizing both DNR and cytotoxic aldehydes derived from ROS-linked lipid peroxidation.
Doxorubicin (DOX) is widely used for the treatment of a wide range of cancers such as breast and lung cancers, and malignant lymphomas, but is generally less efficacious in gastrointestinal cancers. The most accepted explanation for the DOX refractoriness is its resistance development. Here, we established DOX-resistant phenotypes of human gastric MKN45 and colon LoVo cells by continuous exposure to incremental concentrations of the drug. While the parental MKN45 and LoVo cells expressed carbonyl reductase 1 (CBR1) highly and moderately, respectively, the gain of DOX resistance further elevated the CBR1 expression. Additionally, the DOX-elicited cytotoxicity was lowered by overexpression of CBR1 and inversely strengthened by knockdown of the enzyme using small interfering RNA or pretreating with the specific inhibitor quercetin, which also reduced the DOX refractoriness of the two resistant cells. These suggest that CBR1 is a key enzyme responsible for the DOX resistance of gastrointestinal cancer cells and that its inhibitor is useful in the adjuvant therapy. Although CBR1 is known to metabolize DOX to a less toxic anticancer metabolite doxorubicinol, its overexpression in the parental cells hardly show significant reductase activity toward low concentration of DOX. In contrast, the overexpression of CBR1 increased the reductase activity toward an oxidative stress-derived cytotoxic aldehyde 4-oxo-2-nonenal. The sensitivity of the DOX-resistant cells to 4-oxo-2-nonenal was lower than that of the parental cells, and the resistance-elicited hyposensitivity was almost completely ameliorated by addition of the CBR1 inhibitor. Thus, CBR1 may promote development of DOX resistance through detoxification of cytotoxic aldehydes, rather than the drug's metabolism.Key words carbonyl reductase 1; doxorubicin; drug resistance; gastrointestinal cancer cell; quercetin An anthracycline-based antibiotic doxorubicin (DOX) is widely utilized for the treatment of patients not only with solid tumors formed in many organs including breast, lung and stomach, but also with malignant lymphomas. 1) One of the major anticancer actions of DOX is intercalation into the double-stranded DNA and the resultant inhibition of DNA/RNA polymerases.1) In addition, treatment with the drug is known to form the tripartite complex with DNA and topoisomerase-II, ultimately blocking the transcription and replication of DNA. Besides the events essential for protein biosynthesis and cell proliferation, the free radical formation is proposed as another cytolethal mechanism triggered by DOX.1-3) Cellular reductases such as cytochrome P450 reductase 4) and xanthine oxidase 5) catalyze the one-electron reduction of the p-quinone structure in the anthraquinone ring of DOX into a semiquinone radical intermediate, which in turn reacts with molecular oxygen to yield superoxide anion radical. The radical is further converted into a more potent oxidizing agent hydroxyl radical, and thereby oxidatively modifies intracellular components such as nucleic acids, lipids an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.