Since the infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China during December 2019, the coronavirus disease 2019 has spread on a global scale, causing the World Health Organization (WHO) to issue a warning. While novel vaccines and drugs that target SARS-CoV-2 are under development, this review provides information on therapeutics which are under clinical trials or are proposed to antagonize SARS-CoV-2. Based on the information gained from the responses to other RNA coronaviruses, including the strains that cause severe acute respiratory syndrome (SARS)-coronaviruses and Middle East respiratory syndrome (MERS), drug repurposing might be a viable strategy. Since several antiviral therapies can inhibit viral replication cycles or relieve symptoms, mechanisms unique to RNA viruses will be important for the clinical development of antivirals against SARS-CoV-2. Given that several currently marketed drugs may be efficient therapeutic agents for severe COVID-19 cases, they may be beneficial for future viral pandemics and other infections caused by RNA viruses when standard treatments are unavailable.
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Pancreatic ductal adenocarcinoma (PDAC) is caused by genetic mutations in four genes: KRAS proto-oncogene and GTPase (KRAS), tumor protein P53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and mothers against decapentaplegic homolog 4 (SMAD4), also called the big 4. The changes in tumors are very complex, making their characterization in the early stages challenging. Therefore, the development of innovative therapeutic approaches is desirable. The key to overcoming PDAC is diagnosing it in the early stages. Therefore, recent studies have investigated the multifaced characteristics of PDAC, which includes cancer cell metabolism, mesenchymal cells including cancer-associated fibroblasts and immune cells, and metagenomics, which extend to characterize various biomolecules including RNAs and volatile organic compounds. Various alterations in the KRAS-dependent as well as KRAS-independent pathways are involved in the refractoriness of PDAC. The optimal combination of these new technologies is expected to help treat intractable pancreatic cancer.
m6A RNA methylation, a predominant type of RNA modification, is involved in regulating mRNA splicing, stability, and translation as well as the interaction between nucleoproteins and noncoding RNAs. Recent studies have revealed that m6A RNA methylation plays a critical role in the self-to-non-self-recognition of immune cells against endogenous mutations in cancer and exogenous organism-related infections. As an epigenetic mechanism, m6A RNA modification induces immune cell signal transduction, which is altered in the tumor microenvironment, as detected in liquid biopsy. Furthermore, m6A RNA methylation-related inflammation is involved in the cellular response to viral infections, including the emerging severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Given the importance of the immune response in maintaining homeostasis in higher eukaryotes, m6A RNA methylation could be useful not only for the early detection of cancer but also for SARS-CoV-2 screening during a global pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.