As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Sialic acids (Sia) are involved in many biological activities and frequently exist as monosialyl residues at the non-reducing terminal end of glycoconjugates. Occasionally, polymerized structures in the form of disialic acid (diSia), oligosialic acid (oligoSia) and polysialic acid (polySia) are also found in glycoconjugates. In particular, polySia, which is an evolutionarily conserved epitope from sea urchin to humans, is one of the most biologically important glycotopes in vertebrates. The biological functions of polySia, especially on neural cell adhesion molecules, have been well studied and an in-depth body of knowledge concerning polySia has been accumulated. However, considerably less attention has been paid to glycoproteins containing di- and oligoSia groups. However, advances in analytical methods for detecting oligo/polymerized structures have allowed the identification and characterization of an increasing number of glycoproteins containing di/oligo/polySia chains in nature. In addition, sophisticated genetic techniques have also helped to elucidate the underlying mechanisms of polySia-mediated activities. In this review, recent advances in the study of the chemical properties, distribution and functions of di-, oligo- and polySia residues on glycoproteins are described.
Polysialic acid (polySia) is the homopolymer of sialic acid and negatively regulates neuronal cell-cell and cell-extracellular matrix interactions through steric and repulsive hindrance due to its bulky polyanionic structure. Whether polySia also functions as a positive regulator in the nervous system through binding to specific ligands is not known. In the present study, we demonstrated that a brain-derived neurotrophic factor (BDNF) dimer binds directly to polySia to form a large complex with an M(r) greater than 2000 kDa under physiologic conditions. Although somewhat affected by the linkage and type of sialic acid components in the polySia, the complex formation is highly dependent on the polySia chain length. The minimum degree of polymerization required for the complex formation is 12. This is the first study to demonstrate the biologic significance of the degree of polySia polymerization in eukaryotes. Similar large polySia complexes form with other neurotrophic factors such as nerve growth factor, neurotrophin-3, and neurotrophin-4. Furthermore, the BDNF, after making a complex with polySia, can bind to the BDNF receptors, TrkB and p75NTR. The complex formation of BDNF with polySia upregulates growth or/and survival of neuroblastoma cells. These findings suggest that polySia functions as a reservoir of BDNF and other neurotrophic factors and may serve to regulate their local concentrations on the cell surface.
Tumor hypoxia figures heavily in malignant progression by altering the intracellular glucose metabolism and inducing angiogenic factor production, thus, selecting and expanding more aggressive cancer cell clones. Little is known, however, regarding hypoxia-induced antigenic changes in cancers. We investigated the expression of N-glycolyl sialic acid (NeuGc)-G M2 , a cancer-associated ganglioside containing non-human sialic acid, NeuGc, in human cancers. Cancer tissues prepared from patients with colon cancers frequently expressed NeuGc-G M2 , whereas it was virtually absent in nonmalignant colonic epithelia. Studies on cultured cancer cells indicated that the non-human sialic acid was incorporated from culture medium. Hypoxic culture markedly induced mRNA for a sialic acid transporter, sialin, and this accompanied enhanced incorporation of NeuGc as well as N-acetyl sialic acid. Transfection of cells with sialin gene conferred accelerated sialic acid transport and induced cell surface expression of NeuGc-G M2 . We propose that the preferential expression of NeuGc-G M2 in cancers is closely associated with tumor hypoxia. Hypoxic culture of tumor cells induces expression of the sialic acid transporter, and enhances the incorporation of non-human sialic acid from the external milieu. A consequence of this is the acquisition of cancer-associated cell surface gangliosides, typically G M2 , containing nonhuman sialic acid (NeuGc), which is not endogenously synthesized through CMP-N-acetyl sialic acid hydroxylase because humans lack the gene for the synthetic enzyme. As hypoxia is associated with diminished response to radiotherapy and chemotherapy, NeuGc-G M2 is a potential therapeutic target for hypoxic cancer cells. (Cancer Res 2006; 66(6): 2937-45)
Polysialic acid (polySia), a unique acidic glycan modifying neural cell adhesion molecule (NCAM), is known to regulate embryonic neural development and adult brain functions. Polysialyltransferase STX is responsible for the synthesis of polySia, and two single nucleotide polymorphisms (SNPs) of the coding region of STX are reported from schizophrenic patients: SNP7 and SNP9, respectively, giving STX(G421A) with E141K and STX(C621G) with silent mutations. In this study, we focused on these mutations and a binding activity of polySia to neural materials, such as brain-derived neurotrophic factor (BDNF). Here we describe three new findings. First, STX(G421A) shows a dramatic decrease in polySia synthetic activity on NCAM, whereas STX(C621G) does not. The STX(G421A)-derived polySia-NCAM contains a lower amount of polySia with a shorter chain length. Second, polySia shows a dopamine (DA) binding activity, which is a new function of polySia as revealed by frontal affinity chromatography for measuring the polySia-neurotransmitter interactions. Interestingly, the STX(G421A)-derived polySia-NCAM completely loses the DA binding activity, whereas it greatly diminishes but does not lose the BDNF binding activity. Third, an impairment of the polySia structure with an endosialidase modulates the DA-mediated Akt signaling. Taken together, impairment of the amount and quality of polySia may be involved in psychiatric disorders through impaired binding to BDNF and DA, which are deeply involved in schizophrenia and other psychiatric disorders, such as depression and bipolar disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.