Abstract:We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE) integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99), and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL). In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na + /K + selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (logk Na,K pot = −2.8) and good potential stability. The sodium ISE could measure 0.4 mM (10 −3.4 M) sodium ion levels in the hydrogels containing 268 mM (10 −0.57 M) KCl. The small integrated sensor (ϕ < 10 mm) detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.