Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.
Summary
1.Alterations to river flow and morphology widely impact riverine habitats. Little is known about the consequences of such alterations on riparian arthropods, although they contribute substantially to riverine biodiversity and play a critical role in linking aquatic and terrestrial food webs. 2. We investigated the interactive effects of flow regulation (hydropeaking) and river channelization on gravel-bar habitat characteristics and riparian arthropods in seven Alpine rivers. Digital elevation models were developed to simulate inundation dynamics of each gravel bar. 3. Channelization significantly increased inundation frequency, and hydropeaking increased substrate embeddedness. The total abundance of riparian arthropods was significantly reduced by hydropeaking, whereas arthropod species richness was reduced by both hydropeaking and channelization. Sites that were affected by both hydrological and morphological modifications together were almost devoid of arthropods. 4. The sensitivity of riparian arthropods to alterations in flow and morphology differed among taxa. Spider abundance and richness were significantly reduced by channelization only. Ground beetles showed no significant response. Rove beetle abundance and richness were negatively affected by hydropeaking whereas channelization had a negative effect only in rivers with hydropeaking. 5. Abundance and richness of all taxa combined, and of spiders independently, were negatively correlated with inundation frequency and substrate embeddedness. Rove beetle abundance and richness were negatively correlated with embeddedness. Spider and rove beetle richness were also correlated with gravel bar area. 6. Synthesis and applications. Our results indicate that the richness and abundance of riparian arthropods were predominantly affected by the availability of exposed gravel above the average high-water level and substrate embeddedness. Restoration of riverbank morphology and mitigation of hydropeaking are likely to benefit riparian arthropods. Riparian arthropods, particularly spiders and rove beetles, appear to be sensitive indicators of the ecological effects of hydromorphological alterations in rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.