ObjectivesNanoparticle albumin-bound paclitaxel (nab-paclitaxel) produced good tumor response in cases with lung squamous cell carcinoma, one of the most difficult cancers to treat. Secreted protein acidic and rich in cysteine (SPARC) binds to albumin, suggesting that SPARC plays an important role in tumor uptake of nab-paclitaxel. There is as yet no predictive marker for cytotoxic agents against non-small-cell lung cancer (NSCLC), and hence we believed that SPARC expression might be associated with tumor response to nab-paclitaxel.Patients and methodsWe studied stromal SPARC reactivity and its association with clinicopathological characteristics in 200 cases of NSCLC using a custom tissue microarray fabricated in our laboratory by immunohistochemical staining. We also investigated the relationship between stromal SPARC reactivity and tumor response to nab-paclitaxel using biopsy or surgical specimens obtained from advanced or recurrent lung cancer patients.ResultsHigh SPARC stromal reactivity (>50% of optical fields examined) was detected in 16.5% of cases and intermediate SPARC reactivity (10%–50%) in 56% of cases. High expression in cancer cells was rare (five cases). Stromal SPARC level was correlated with smoking index, squamous cell carcinoma, and vessel invasion. Furthermore, patients with high stromal SPARC reactivity in biopsy specimens such as transbronchial lung biopsy or surgical specimens tended to respond better to nab-paclitaxel.ConclusionStromal SPARC was detected by immunohistochemical staining in ∼70% of NSCLC cases, and good tumor response to nab-paclitaxel was correlated with high stromal SPARC reactivity. SPARC may be a useful predictive marker for selecting patients likely to respond favorably to nab-paclitaxel treatment.
Background Immune‐related adverse events (irAEs) should be anticipated with treatment by immune checkpoint inhibitors (ICIs). Although the relationship between irAEs and efficacy of ICI has been reported, it has not yet been clarified whether the benefit from ICI outweighs the low frequency of proceeding to subsequent therapies after discontinuation due to irAEs. Methods The study comprised 61 patients with non‐small cell lung cancer who underwent treatment with ICIs (nivolumab or pembrolizumab monotherapy) at the Saga University Medical School Hospital from December 2015 to January 2018. Therapeutic effect and progression‐free survival (PFS) were compared between the irAEs discontinuation group (AEg) and the group with discontinuation due to all causes other than irAEs (Non‐AEg). Results A total of 30% patients(18/61) had therapy discontinued due to irAEs: 22.5% (9/40) with nivolumab and 42.9% (9/21) with pembrolizumab. The response rate was 50.0% in the AEg and 8.1% in the on‐AEg (P = 0.001). The median PFS was significantly longer in the AEg (9.3 months; 95% CI 2.1–12.1) than in the non‐AEg (1.9 months; 95% CI 0.9–3.6): HR 0.45 (95%CI 0.20–0.89; log‐rank test P = 0.026). The prevalence of drug‐induced interstitial lung disease (ILD) was 6.1% (3/49) in cases without interstitial pneumonia (IP) as the underlying disease, whereas it was 50% (6/12) in cases with IP (P = 0.001). Conclusion Discontinuation of treatment with ICIs due to irAEs predict a good response to ICIs and favorable outcome since their anti‐cancer effects continue even after discontinuation. However, the presence of IP as the underlying disease increases the risk of drug‐related ILD onset.
The clinical utility of plasma DNA for detecting cancer-specific mutations has rapidly achieved recognition, but reliability has not been established because of relatively low mutation-detection rates compared with those from tissue re-biopsy. To address this shortcoming we examined efficiency, in terms of mutation detection, of an automated DNA extraction system that uses cellulose magnetic beads. A fully automated, highly sensitive point-mutation-detection method, mutation-biased PCR and quenching probe (MBP-QP) system, was used for this study. Plasma DNA was extracted from 61 plasma samples collected from patients with advanced non-small cell lung cancer. Extraction was performed manually with 200 μl plasma (200-M) by using a silica membrane spin column system or an automated system using 200 μl (200-A) or 1000 μl (1000-A) plasma. Median DNA yield quantified by real-time PCR was 4.4, 4.5, and 17.3 ng with the three methods, respectively. Sensitivity for detecting epidermal growth factor receptor (EGFR) L858R point mutation was 36.6%, 58.5%, and 77.5%, and specificity was 93.3%, 100%, and 96.7%, respectively. Concordance rates were 60.6%, 76.1%, and 85.7%. The size distribution of plasma DNA with automated extraction was bimodal with modes at about 170 bp and 5 Kb, and plasma DNA of both sizes included tumor-derived DNA. In this report, we demonstrate that automated DNA extraction using cellulose magnetic beads can improve mutation-detection rates with plasma DNA in association with two overall sizes of DNA fragments recovered by this DNA isolation system. Examining the biological characteristics of these fragments will be the subject of further investigation.
Liquid biopsy with circulating free DNA (cfDNA) is a recommended alternative method of re-biopsy. Quality control with cfDNA is indispensable for precise examinations, and it is desirable to achieve high-quality cfDNA separation. We investigated two issues: the influence of pre-analytical procedures on cfDNA analysis performed as a routine procedure in a standard clinical laboratory, and the extent of deterioration of cfDNA quality due to long-term storage. Comparisons among blood collection tube types, storage temperatures, and periods of blood separation were performed in terms of cfDNA quantification, cfDNA size distribution, and detection of EGFR mutations. Quality of cfDNA was better with collection tubes containing 3.2% sodium citrate than with those containing EDTA 2K, and was maintained with storage at 4° C for up to 72 h after blood collection, equivalent to results with cell-stabilizing blood collection tubes. Analysis of cfDNA stored for 7 years showed that samples with low allele frequency (AF) deteriorated more readily than samples with high AF. Despite the same storage period and extraction method, AF of plasma stored for 7 years was remarkably lower than that of cfDNA. However, deterioration due to long-term plasma storage was overcome by changing the DNA extraction method from a silica membrane spin column to a cellulose magnetic beads system. These results can guide the establishment of standardized pre-analytical procedures for liquid biopsy with cfDNA.
Although mechanisms of acquired resistance to 1st and 3rd generation EGFR-TKI continue to be elucidated, there have been few clinical investigations into the mechanisms of acquired resistance to the 2nd generation EGFR-TKI afatinib. We analyzed data from 20 patients with advanced lung adenocarcinoma who acquired resistance to afatinib, including resistance during EGFR-TKI re-challenge. We examined EGFR T790M and C797S mutations, BRAF V600E mutation, and MET amplification with the MBP-QP method and with droplet digital PCR using ctDNA and re-biopsy samples obtained before and after afatinib treatment. Just before afatinib treatment, 15 of the 20 patients were T790M negative and five were positive. Among the T790M negative patients, 40.0% (6/15) became positive at the time of PD under afatinib. In patients positive for T790M, changes in T790M allele frequency were correlated with afatinib treatment efficacy. C797S was not detected in any patients just before afatinib treatment, but it appeared after treatment in three patients, although with very low allele frequency. Two of these three patients, although positive for both C797S and T790M, achieved PR to osimertinib. However, PFS of these patients was somewhat shorter than that of patients positive for T790M only. BRAF V600E was detected in one patient at PD under afatinib. MET amplification was not detected in this study. T790M is associated with acquired resistance to afatinib, as with 1st generation EGFR-TKI, but with somewhat lower frequency. The influence of C797S on resistance to afatinib is less than that of T790M, but C797S might cause shorter PFS under osimertinib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.